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Abstract

We consider a network economy in which economic agents are connected within a
structure of value-generating relationships. Agents are assumed to be able to partic-
ipate in three types of economic activities: autarkic self-provision; binary matching
interactions; and multi-person cooperative collaborations. We introduce two concepts
of stability and provide sufficient and necessary conditions on the prevailing network
structure for the existence of stable assignments, both in the absence of externalities
from cooperation as well as in the presence of size-based externalities. We show that
institutional elements such as the emergence of socioeconomic roles and hierarchical
leadership structures are necessary for establishing stability and as such support and
promote stable economic development.
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1 Market makers and stability

An age-old question in economics is how complex structures and organizations emerge from
choices made by individual decision makers in a decentralized economy. In this paper we
investigate the formation of organization structures that come about through the leadership
of endogenously emerging market makers. Our model allows not only for the endogenous
selection of such market makers, but also for the endogenous determination of the size of
these organizations. Our main insight is that behavioral rules support the emergence of
stable network structures or institutions in such economies.

Our approach considers economic agents as being embedded in a given network of po-
tential value-generating economic relationships that they can activate under mutual consent.
Within this framework, we focus on the stability of emerging patterns of activated relation-
ships. We use straightforward extensions of standard equilibrium concepts from matching
theory (Roth and Sotomayor, 1990) and network formation theory (Jackson and Wolinsky,
1996) to describe such stable assignments. We then identify conditions on the network
structure of value-generating activities that guarantee the existence of such stable assign-
ments. These conditions point unquestionably to institutional features of the network as
representing the social capital instilled in these networks (Portes, 1998; Dasgupta, 2005).
This allows us to additionally interpret economic institutions as social rules that support and
guarantee universal stability in an economy. Instability of such patterns, on the other hand,
is manifested in a dysfunctional institutional organization of the economy.

Through the work of Coase (1937), North and Thomas (1973), Williamson (1975), North
(1990) and Greif (2006), institutions are usually understood as devices that lower market
transaction costs. Lower transaction costs in turn result into increased market efficiency and
consequently economic growth and development. Our approach, instead, takes these insti-
tutions as fitting specifications of underlying network properties and forces. We consider
institutions as functional stabilizers and promoters of economic development and growth
(Klaes, 2000). From this viewpoint institutional development is more closely related to
Smithian development based on the deepening of the social division of labor, seminally
proposed by Smith (1776).

More specifically, our approach is based on a notion of stability as being attributed to the
network of socioeconomic relations itself; we identify network properties such that for ev-

ery possible configuration of individuals’ productive abilities and preferences, the economy
possesses at least one equilibrium state. Individuals deliberately activate certain potential
relationships when engaging in economic interaction. We identify stable configurations of
activated relationships and determine the structural conditions under which stable configu-
rations arise for arbitrary distributions of skills, productive capabilities and preferences. In
particular, we find that certain forms of network acyclicity form a class of crucial proper-
ties that allow for equilibrium configurations of matches to emerge. We follow a two-stage
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development of our theory. First, we discuss stability in bilateral matching structures and,
subsequently, for the case of matching activities enhanced with multi-agent cooperative col-
laborations.

To show the fundamental principles of our approach, we first present some simple con-
figurations and debate the concepts that are required to describe the endogenous emergence
of stable interaction patterns.

1.1 Networks and matchings

We first address how economic agents engage in pairwise interactions that are mutually
beneficial. Throughout, we assume that economic agents can only potentially engage in
economic interaction with a limited set of partners. Thus, the society is endowed with a set
of potential economic relationships that can be activated under mutual consent. An example
of a network of potential relationships is depicted in Figure 1 on a set of five economic
agents N = {a,b, c,d, e}. Hence, the situation depicted in Figure 1 does not allow agents a
and c to engage in mutually beneficial interaction. Similarly for the pairs {a,d} and {c,d}.

b

a

c

d

e

Figure 1: Network structureA

We assume that in the network structure A depicted in Figure 1, agents interact by ex-
changing (indivisible) favors (Jackson, Rodriguez-Barraquer, and Tan, 2011). Thus, two
linked individuals i and j in N can mutually decide to activate the relationship i j and ex-
change favors. Such exchanges result into a hedonic utility values ui(i j) that accrues to agent
i from forming the exchange relationship i j with j. We represent these hedonic utility values
in the following matrix:

a b c d e
a 0 2 – – 1
b 1 0 2 2 –
c – 1 0 – 2
d – 1 – 0 2
e 3 – 1 1 0
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This matrix represents the potential matchings in the given network.1 Within this set-
ting we investigate a standard notion of stability. We assume that every agent can activate
at most one (potential) exchange relationship, forming a so-called exchange pattern. An
exchange pattern is stable if (i) there is no agent who prefers to remain in autarky rather
than engage with the exchange in the proposed pattern (“individual rationality”); and (ii)
there is no pair of agents who prefer to exchange favors rather than exchanging favors with
their assigned partners (“pairwise stability”). In the constructed example there emerge two
stable exchange patterns: π1 = {ae,bc,dd} and π2 = {ae,bd,cc}. In fact, our main existence
result stated as Theorem 3.5 implies that for any distribution of utilities resulting from favor
exchange for network structureA there exists a stable exchange pattern that satisfies (i) and
(ii) formulated above.

Next we modify the structure of potential relationships on N as depicted in Figure 2. It is
clear that agent c now occupies a centralized position and can interact with any of the four
other agents.

b

a

c

d

e

Figure 2: Network structure B

We report the payoffs from favor exchange for structure B in the matrix below. The
underlying favors are similarly distributed as the case considered in structureA.

a b c d e
a 0 2 1 – –
b 1 0 2 – –
c 2 1 0 2 1
d – – 1 0 2
e – – 2 1 0

We now claim that for the given payoffs there does not exist a stable exchange pattern in B.
Indeed, consider pattern π′ = {ab, cd, ee}, then both agents d and e would prefer to exchange

1The matrix is actually the incidence matrix of network structureA in which potential payoffs are reported.
The number reported in field (i, j) is ui(i j). Similarly, the field ( j, i) reports u j(i j). If no relationship can be
formed, no payoff is reported. Note that we assume that agent i ∈ N does not exchange favors with herself in
autarky, i.e., ui(ii) = 0.

3



favors rather than being engaged with c and being autarkic, respectively. Other patterns can
be shown to be unstable as well.

What makes exchange structure B more prone to instability than exchange structureA?
We find that the unique feature of a network economy that allows agents to be divided into
two distinct economic roles—dark grey nodes versus white ones in Figure 1—such that
favor exchange is potentially only carried out between any two agents of distinct colors or
“roles”. On the other hand, structure B requires three distinct colors or roles, indicated as
dark grey, light grey and white. This feature ensures the stability in a structure like A, and
conversely, the impossibility of stability in a structure like B. Thus, stability of exchange is
founded on the property that the network structure has an institutional foundation on exactly
two socio-economic roles.

1.2 Introducing market makers

Next we introduce the ability of economic agents to engage in multi-agent collaborations
or cooperative economic activities. In our network setting, a cooperative activity requires
the active involvement of a convener, who brings together the group of economic agents
that forms this value-generating cooperative economic activity. Thus, the convener facili-
tates the cooperative activity and acts in all respects as a “market maker”.2 In this regard
these cooperative activities are relational forms of clubs introduced seminally by Buchanan
(1965). We consider the case that a convener can only invite economic agents to participate
in a cooperative activity if they have a potential relationship with her. In other words, the
convener only collaborates with acquaintances.

Furthermore, the economic values generated through these cooperative activities are ex-
pressed as hedonic utilities. The notion of hedonic games in the context of coalition forma-
tion was seminally introduced by Dreze and Greenberg (1980) and further studied by Bo-
gomolnaia and Jackson (2004), Banerjee, Konishi, and Sonmez (2001), and Pápai (2004),
among others.3 This is a standard technique from the theory of clubs as well. We refer to
the review of Scotchmer (2002) for a discussion of this technique. It allows us to reduce the
analysis of the formation of relational cooperative activities to a single dimension, expressed
through the hedonic utility functions of the various economic agents.

We thus arrive at a network economy in which economic agents can engage into three
types of economic activities: autarkic self-provision, binary matching interactions, and co-
operative activities formed through intermediation of a convener. Each of these three types
of activities generates different hedonic utility levels for its participants. We explicitly as-
sume that there are no widespread externalities among the various distinct activities; the

2In this setting a market is now a cooperative economic activity in which the market auctioneer acts as its
convener. So, standard markets can be viewed as a special category of cooperative economic activity.

3We point out that what distinguishes our work from those studying coalition formation games is that we
employ a network approach.
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generated values are solely the outcome of the activities themselves.4

Returning to the examples developed above for network patterns A and B, we intro-
duce simple additive multi-agent collaborations as follows. A collaborative is now a star-
structured subnetwork of the imposed network pattern. Thus, in structure A agent a can
collaborate with b and e, while agent b could principally collaborate with a, c and d. The
convener is now the agent in the center of the star-structured subnetwork.

In the example we assume that there are no spillovers in the payoffs from multi-agent
collaboratives. This means that, if an agent i ∈ N collaborates as a convener with agents
j ∈ Gi ⊂ N \ {i}, then agent i collects a net benefit of

ui(G) =
∑
j∈Gi

ui(i j), (1)

where G = Gi ∪ {i} is the complete cooperative. Thus, if a convenes G = abe = {a,b, e}
in structure A, then he receives ua(abe) = ua(ab) + ua(ae) = 3. On the other hand, agent j

acting as a regular member of a collaborative around convener i just receives u j(i j) from her
participation in this collaborative. Thus, ub(abe) = ub(ab) = 1.

We devise a standard equilibrium concept in which each agent participates in exactly
one permissible economic activity. In equilibrium, no agent has an incentive to join another
potentially accessible activity. Such an equilibrium is called a stable assignment.

In structure A as depicted in Figure 1 there is no such stable assignment. Indeed, take
{ab, ecd}, then agents a and b engage in pairwise exchange and obtain ua(ab) = 2 and
ub(ab) = 1, respectively. On the other hand, agent e as a convener receives ue(ecd) = 2,
while (regular) members c and d receive uc(ecd) = ud(ecd) = 2. Now, agents a and e can
mutually improve their positions and agent b will not suffer by engaging in collaborative
abe, where a acts as its convener. Indeed, ua(abe) = 3 > 2 = ua(ab), ue(abe) = 3 >

2 = ue(ecd) and ub(abe) = ub(ab) = 1. Similarly, one can show that in all other exchange
patterns there will be a profitable deviation, showing universal instability.

In contrast, in structure B depicted in Figure 2 there exists a stable assignment or ex-
change pattern, namely the complete collaboration {cabde} convened around agent c. Here,
uc(cabde) = 6, ua(cabde) = ud(cabde) = 1 and ub(cabde) = ue(cabde) = 2. Now, agent
a would rather be exchanging favors with b, but agent b would not agree due to lowering
her payoff. We show in Theorem 4.7 that in fact for any payoff structure without spillovers
there exists a stable exchange pattern in structure B.

It is clear from the discussion above that stability is again determined by the (insti-
tutional) features of the network structure underlying the economy. Our main existence
theorems exactly determine these conditions. In its full development, we consider different
forms of stability that implement certain features of multi-agent collaboration. We distin-

4This does not, however, exclude various forms of externalities among the members of a cooperative.
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guish “open” cooperatives from “closed” cooperatives in that in the latter a convener fully
controls the admittance of agents to the cooperative, while in the former this control is lim-
ited. Openness is a requirement for stability if there are certain spillover effects among
collaborating agents. Closedness can be supported in the absence of such externalities.

The remainder of this paper is organized as follows. Section 2 introduces our network ap-
proach to economic interaction. Section 3 discusses stability in matching economies , while
in Section 4 we extend this model to include multi-agent cooperative economic activities.
In this setting we analyze the emergence of stable interaction patterns if there are no exter-
nalities and discuss the implications of the introduction of certain externalities. Section 5
offers some concluding remarks and directions for future research. Proofs are collected in
the appendices.

2 A network approach to economic interaction

In this section we introduce some basic definitions and fundamental concepts from social
network theory5 and we develop the key concepts in our network approach to describing
economic activities. In particular, we use links between economic agents to describe primi-
tive binary economic interaction.

The main postulate of our theoretical construction is that all economic activities are prin-
cipally relational. More precisely, a multi-agent economic collaboration is assumed to be
structured as a collection of binary economic network relationships: Each cooperative eco-
nomic activity is embedded within the prevailing network of binary economic relationships
in the sense of Granovetter (1985). Henceforth, our theory is founded on purely abstract re-
lational activities without explicit reference to other primitive concepts such as commodities
or trade and production technologies. Therefore, an economic activity is abstractly defined
as any economic interaction between a group of linked economic agents that generates a
hedonic utility value for each of its participants (Granovetter, 2005).

We emphasize that in our approach the economy solely consists of relational activities.
Within this framework a market is viewed as a value-generating cooperative activity. But
a market is local rather than global and anonymous; it is only open to its members, where
potential membership is determined by the underlying structure of potential trade relation-
ships.6

5Here we refer to Jackson and Wolinsky (1996), Bala and Goyal (2000), Jackson (2003), and Gilles and
Sarangi (2010) for a comprehensive overview of concepts from standard network theory.

6We believe that this view conforms with markets in the global economy such as the New York Stock
Exchange (NYSE), NASDAQ, and the Chicago commodity markets. All of these markets are essentially
clubs, only accessible to its members.
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Relational economic activities

Throughout we work with a finite set of economic agents denoted by N = {1, ..., n}. These
economic agents can engage in three different relational economic activities that generate
individual values for the participants. The first and most primitive form of economic activity
is that of economic autarky. In this case an agent i ∈ N engages in home production.
For an individual economic agent i ∈ N we denote by ii the agent’s possibility to engage
autarkically in activities that allow her to attain a subsistence level. Thus we arrive at the
class of all autarkic activities denoted by

Ω = {ii | i ∈ N}. (2)

The second level of economic activity is that of an economic matching in the sense that two
agents i and j engage into some interaction that generates (hedonic utility) values for both
of these agents. This form of relational activity is purely binary. These matchings capture
any exchange relationship or interaction among intermediate good producers who provide
specialized inputs for final good producers.

Formally, consider any i, j ∈ N with i , j. Now we denote by the mathematical expres-
sion i j = {i, j} a binary economic activity involving agents i and j.7 The binary economic
activity i j is called the matching of agents i and j if i and j can potentially engage into the
relationship and achieve mutual benefits from this relationship. Clearly, not every arbitrary
pair of economic agents can potentially form a matching. Formally, we introduce Γ as the
class of all (feasible) matchings with

Γ ⊆ ΓN = {i j | i, j ∈ N and i , j}. (3)

Throughout we assume that for every agent i ∈ N there is some j ∈ N with i j ∈ Γ.
We regard a matching i j ∈ Γ to be purely potential in nature in the sense that the mem-

bers constituting the activity i j have to consent to participate in this activity before it is
realized. Since Γ is a subset of the set of all possible pairings ΓN , it is designed to capture
physical, institutional, or any other constraints that may prohibit the occurrence of economic
matching activities between certain agents. In this regard the structure Γ reflects the rela-
tional trust that is present among the agents in the economy. Indeed, an agent trusts that
engaging in an economically relevant relationship with another distinct agent will result in
a beneficial outcome for herself. These restrictions, however, cannot preclude opting out of
any engagement in any economic relationship with others in the sense that each i ∈ N can
always decide to initiate her autarkic activity ii ∈ Ω.

In terms of our framework one can think of the pair (Ω,Γ) as the foundation of a social

7We remark here that i j = ji. Note that if i = j, the relational activity ii represents again the economic
autarky of agent i.
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activity structure in the economy. These foundational autarkic and matching activities are
called simple activities. Thus, ∆m = Ω∪Γ is now referred to as a simple interaction structure.

For any sub-structure H ⊆ ∆m = Ω ∪ Γ we denote

N(H) = {i ∈ N | There is some j , i such that i j ∈ H} (4)

as the set of economic agents that are engaged within the sub-structure H. It is easy to see
that N(H) = N(H \Ω). Also, for every H ⊆ Γ, if H , ∅, then N(H) , ∅. Finally, due to the
assumptions made, it holds that N(∆m) = N(Γ) = N.

We define a path between any two distinct agents i ∈ N and j ∈ N in H ⊆ Γ as a
sequence of distinct agents Pi j(H) = (i1, i2, . . . , im) with i1 = i, im = j, ik ∈ N and ikik+1 ∈ H

for all k ∈ {1, . . . ,m − 1}. We define a cycle in H to be a path of an agent from herself to
herself which contains at least two other distinct agents, i.e., a cycle in H from i to herself
is defined as a path C = (i1, i2, . . . , im) with i1 = i, im = i, m > 4, ik ∈ N, and ikik+1 ∈ H for
all k ∈ {1, . . . ,m − 1}. The length of the cycle C is denoted by `(C) = m − 1 > 3. A sub-
structure H ⊆ Γ is called acyclic if H does not contain any cycles. Agent i’s neighborhood

in sub-structure H is defined as Ni(H) = { j ∈ N | i j ∈ H}. Note here that if i ∈ Ni(H),
then ii ∈ H. Also, by the definition of the matching structure Γ, it holds that Ni(Γ) , ∅ for
any i ∈ N. We can also express the neighborhood of an agent within an arbitrary structure
H ⊂ ∆m in terms of its link based analogue, i.e., Li(H) = {i j ∈ H | j ∈ Ni(H)} ⊂ H.
For example, Li(∆m) = {ii} ∪ Li(Γ) is the set of feasible simple activities that agent i can
potentially participate in.

Within the setting of the simple interaction structure (Ω,Γ) we introduce a third type of re-
lational economic activity, that of a (relational) multi-agent collaboration. Such cooperative
activities are assumed to be centered around a market maker or “convener”, representing an
agent who acts as a hub in the network structure of this activity. In particular, a convener
brings together a number of economic agents with whom she already has an established
economic relationship in the form of a matching. This is formalized as follows:

Definition 2.1 Let Γ ⊆ ΓN be a matching structure on N. A cooperative activity—or simply

a “cooperative”—is defined as a sub-structure G ⊆ Γ of matchings such that |N(G)| > 3 and

there is a unique agent i ∈ N(G) such that Ni(G) = N(G) \ {i} and that for all other agents

j ∈ N(G) \ {i} it holds that N j(G) = {i}. The agent i is called the convener of the cooperative

G and denoted by K(G) ∈ N(G).

Our definition of a cooperative imposes that a cooperative has at least three members. Fur-
thermore, a cooperative has an explicit star structure in the matching structure Γ. This
implies that the cooperative has a relational center, representing the convener as a “middle-
man”, binding and coordinating all constituting matchings of the cooperative.
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Using this definition of cooperative activities, we can introduce some auxiliary concepts
and notation.

Definition 2.2 Let Γ ⊆ ΓN be some matching structure.

(a) The collection of all (potential) cooperative activities is now given by

Σ(Γ) = {G | G ⊂ Γ is a cooperative activity } (5)

Σ(Γ) is called the permissible cooperative structure on Γ.

The triple (Ω,Γ,Σ(Γ)) is referred to as the permissible activity structure on N con-

sisting of all autarkies G1 ∈ Ω, all matchings G2 ∈ Γ, and all feasible cooperatives

G3 ∈ Σ(Γ). The union of a permissible activity structure, ∆ = Ω ∪ Γ ∪ Σ(Γ), serves

as its alternative description.

(b) The set of conveners in Γ is defined as the collective of conveners of cooperative

activities in Σ(Γ):

K(Γ) = {i ∈ N | i = K(G) for some G ∈ Σ(Γ)}. (6)

3 Stability in bilateral matching economies

We first address stable interaction in an economy with autarkic and matching activities only.
Based on these “simple” economic activities Gilles, Lazarova, and Ruys (2007) introduced
the notion of a “matching economy”. Here, we build upon this discussion.

Throughout we assume that every individual i ∈ N has complete and transitive prefer-
ences over the permissible simple activities Li(∆m) ⊂ ∆m = Ω ∪ Γ in which she can engage.
Thus, by finiteness of ∆m, these preferences can be represented by a hedonic utility function

given by um
i : Li(∆m)→ R. Let um = (um

1 , . . . , u
m
n ) now denote a hedonic utility profile.

Definition 3.1 A matching economy is defined as a triple Em = (N,∆m, um) in which N is a

finite set of individuals, ∆m = Ω∪Γ is a simple activity structure on N, and um
i : Li(∆m)→ R,

i ∈ N, is a hedonic utility profile on ∆m.

Within the context of a matching economy we investigate stability of an allocation of ac-
tivities. The main hypothesis in the definition of stability is that in a matching economy
Em each individual i ∈ N activates exactly one of her matchings in Li(∆m). This hypothesis
is founded on the fact that a matching economy is not endowed with advanced economic
or social institutions. In such a primitive setting—in which one problem is addressed at a
time—it seems natural to assume that individuals only interact with a single other individual
at a time.
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Definition 3.2 An assignment in the matching economy Em = (N,∆m, um) is a mapping

π : N → ∆m such that

(i) π(i) ∈ Li(∆m) for all i ∈ N and

(ii) π(i) = i j implies that π( j) = i j for all i, j ∈ N.

The set of all assignments π in Em is denoted by Πm.

An assignment π can equivalently be represented by the induced sub-structure in ∆m with

π(N) = {π(i) | i ∈ N}. (7)

We remark that by the imposed hypotheses and definitions, the set of assignments is non-
empty. In particular, Ω ∈ Πm , ∅. Moreover, according to the assumptions made on Γ,
there exist other assignments in which agent i ∈ N is engaged with some other agent j , i;
indeed, there is some π ∈ Πm with π(i) = i j for any i j ∈ Γ.

With some slight abuse of notation, we indicate by um
i (π) the payoff or utility that agent

i ∈ N receives under assignment π ∈ Πm, i.e., um
i (π) = um

i (π(i)).
We introduce stability on an assignment founded on the standard assumptions of individ-

ual rationality and a no-blocking condition from matching theory, denoted here as “pairwise
stability” (Roth and Sotomayor, 1990; Jackson and Wolinsky, 1996).

Definition 3.3 An assignment π ∈ Πm is stable in the matching economy Em = (N,∆m, um)
if all matchings generated by π satisfy the following properties:

Individual Rationality (IR): um
i (π) > um

i (ii) for all i ∈ N, and;

Pairwise stability (PS): There is no blocking matching with regard to π, in the sense that

for all i, j ∈ N, i , j, with π(i) , i j it holds that

um
i (i j) > um

i (π) implies that um
j (i j) 6 um

j (π). (8)

For an economy to have persistent access to gains from organization, the social structure of
the economy has to universally admit stable matchings. Hence, whatever capabilities and
desires of the individuals—represented by their (hedonic) utility functions and (possibly)
other individualistic features—a stable assignment has to exist in the matching economy.

Definition 3.4 A matching structure Γ on N is universally stable if for every hedonic utility

profile um on ∆m = Ω ∪ Γ there exists at least one stable assignment in the corresponding

matching economy Em = (N,∆m, um).
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Clearly, a universally stable feasible structure thus reflects that the institutional organization
of the economy supports stability regardless of the exact individual preferences. In this
regard it reflects a network structure of the economy, which promotes and enhances the
economic activities selected by the economic agents.

The next result identifies the necessary and sufficient conditions for universal stability.
Similar insights have already been established in the literature on matching markets.

Theorem 3.5 A matching structure Γ on N is universally stable if and only if the matching

structure Γ is bipartite in the sense that there exists a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 } . (9)

For a proof of this result we refer to Appendix A of the paper.

The existence result in Theorem 3.5 has a clear interpretation. Any universally stable match-
ing structure has to be based on two socioeconomic roles such that economic matching ac-
tivities can only occur between pairs of agents of distinct roles. Thus, we may interpret
these existence requirements as institutional conditions of the underlying network structure
of the economy. The example of the matching economy in Section 1.1 illustrates this.

4 Stability in multilateral matching economies

Next we extend the scope of our analysis to include multi-agent collaboration through the
introduction of cooperative economic activities in Σ(Γ).

Let ∆ = Ω ∪ Γ ∪ Σ(Γ) be a permissible activity structure on the agent set N. For i ∈ N

we introduce Ai(∆) as the set of all permissible activities in which agent i participates.
Formally,

Ai(∆) = {ii} ∪ {i j | i j ∈ Γ} ∪ {G | G ∈ Σ(Γ) and i ∈ N(G) }. (10)

We denote byA(∆) = ∪i∈NAi(∆) the collection of all activities available to the agents in the
economy.

For every economic agent i ∈ N, preferences are now introduced through the hedonic
utility function ui : Ai(∆)→ R. Let u = (u1, . . . , un) be a profile of hedonic utility functions
for all agents in N. LetU be the set of all profiles of hedonic utility functions on Γ.

Now a network economy is defined to be the set of permissible activities (autarky, match-
ings, and cooperatives) and a hedonic utility function that assigns a utility value to every
agent in each of these permissible activities.

Definition 4.1 A network economy is introduced as a triple E = (N,∆, u) in which N is a

finite set of economic agents ∆ = Ω ∪ Γ ∪ Σ(Γ) is a permissible economic activity structure
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based on some matching structure Γ, and u ∈ U is a profile of hedonic utility functions such

that ui : Ai(∆)→ R for every i ∈ N.

Finally we discuss two notions of stability for such network economies. We again adapt the
concept of pairwise stability in the same fashion as formalized for matching economies in
Definition 3.3.

Definition 4.2 Let E = (N,∆, u) be a network economy.

(a) An assignment in E is a mapping λ : N → A(∆) such that

(i) λ(i) ∈ Ai(∆), and

(ii) λ(i) = G ∈ ∆ implies that λ( j) = G for all j ∈ N(G).

An assignment λ generates a corresponding partitioning given as its image Λ =

(G1, . . . ,Gm) ≡ λ(N) ⊂ ∆.

(b) An assignment λ? : N → A(∆) generating Λ? = (G?
1 , . . . ,G

?
m) is stable in the net-

work economy E if for every p ∈ {1, . . . ,m} the activity G?
p ∈ Λ? satisfies the individ-

ual rationality [IR] and two pairwise stability conditions [PS] and [PS*] as specified

below:

IR for all i ∈ N(G?
p ) it holds that ui(G?

p ) > ui(ii);

PS for all distinct agents i ∈ N(G?
p ) and j ∈ N(G?

q ) with q ∈ {1, . . . ,m} and i j ∈ Γ,

i j < G?
p ∩G?

q :

ui(i j) > ui(G?
p ) implies u j(i j) 6 u j(G?

q ); (11)

PS* and for all distinct agents i ∈ N(G?
p ) and j ∈ N(G?

q ) with q ∈ {1, . . . ,m} with

i j ∈ Γ, i j < G?
p ∩G?

q and either j = K(G?
q ) or G?

q ∈ Γ:

ui(G?
q ∪ {i j}) > ui(G?

p ) implies u j(G?
q ∪ {i j}) 6 u j(G?

p ). (12)

(c) An assignment λ? : N → A(∆) generating Λ? = (G?
1 , . . . ,G

?
m) is strongly stable in

the network economy E if λ? is stable in E and for every p ∈ {1, . . . ,m} the activity

G?
p ∈ Λ? satisfies additionally Reduction Proofness [RP]:

RP If G?
p is a cooperative economic activity, i.e., G?

p ∈ Σ(Γ) ∩Λ?, it holds that for

every sub-structure G ⊂ G?
p

ui(G) 6 ui(G?
p ) (13)

where i = K(G?
p ) = N?(G) is the convener of both G?

p and G.
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As in the case with matching economies, here it is again assumed that agents participate in
a single activity. An assignment is defined to be stable if it satisfies certain standard stability
conditions from game theory, in particular matching theory (Roth and Sotomayor, 1990),
network formation theory (Jackson and Wolinsky, 1996), and core theory for Tiebout and
club economies (Gilles and Scotchmer, 1997).

Condition IR is a standard individual rationality condition that allows an individual to
opt out of an economic activity if she is better off being autarkic. The first pairwise stability
condition PS rules out blocking opportunities for pairs of agents who are not connected to
each other in the same cooperative. It requires that there are no pairs of such agents who
prefer to be linked to each other rather than to the agents with whom they are linked in the
present assignment. Condition PS has already been applied in Definition 3.3 of a stable
assignment for matching economies.

The second pairwise stability condition PS* rules out blocking opportunities for pairs of
agents at least one of whom can add a link without severing his existing links in the present
assignment. Hence, such an agent is either a convener in the present assignment, or she
is linked in a matching with another distinct agent and not member of a cooperative. This
condition requires that there are no two distinct agents who want to be linked to each other
in a cooperative in which one of them is a convener.8

Both PS and PS* are concerned with the re-structuring of the prevailing assignment.
These conditions still do not allow the convener of a cooperative to block access to this
cooperative by an existing member, if it is to their gain. Hence, stability of an assignment
defines a notion of cooperatives that are principally “open” in the sense that once an agent
has fulfilled certain entry requirements she cannot be stropped off her membership. There
are numerous cooperative activities that satisfy the principle of openness such as trading
posts (stores) and markets, open source communities, and many economic service provi-
sion cooperatives (clubs). In most of these cases, if entrants follow the house rules of the
cooperative in question, they will not be excluded from participation.

The stronger notion of strong stability excludes the possibility of open cooperative ac-
tivities. Condition RP explicitly “closes” a cooperative in the sense that the convener is
allowed to discontinue the participation of existing members based on her own preferences.
In economic practice we encounter many such closed cooperatives as well. We mention
as examples team production situations (e.g., health care provision), particular upstream-
downstream relationships in which a primary input producer may discontinue supply to a
final good producer and vice versa, and exclusive clubs (guilds and unions).

Under (regular) stability, a convener is merely a coordinator of a cooperative activity,
that is fully open to participation. On the other hand, under strong stability a convener is

8Note that a convener and an agent linked in a matching with another distinct agent have multiple blocking
opportunities available: such agents can add a link with or without severing their current links. Such agents
are subject to both (no blocking) conditions PS and PS*.
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rather considered to be a manager of the cooperative activity under consideration, since the
convener has more control over who can participate in the cooperative. We emphasize that
strong stability implies stability, i.e., management implies coordination, but that the reverse
is not true.

4.1 Separability: The absence of externalities

After having established a model of relational economic activities, we investigate the ex-
istence of stable assignments. We have to distinguish two types of network economies:
economies with network externalities and spillovers affecting the performance of cooper-
atives and economies without such network externalities. We first investigate economies
without network externalities.

Definition 4.3 Let E = (N,∆, u) be a network economy.

(i) The hedonic utility function ui : Ai(∆) → R exhibits no externalities if for all

Gi ∈ Ai(∆) and Hi ∈ Ai(∆) with Ni(Gi) = Ni(Hi), it holds that ui(Gi) = ui(Hi). The

collection of all utility profiles exhibiting no externalities is denoted byUn ⊂ U.

(ii) The network economy E = (N,∆, u) is separable if ui ∈ Un for every agent i ∈ N.

The non-externality property on a hedonic utility function imposes that an agent derives
value only from matchings with agents with whom she is linked directly. Thus, changes
in cooperatives regarding third parties do not affect the hedonic utility value of a member
of that cooperative. Although this seems to be a very severe condition, it is a common
assumption in traditional club and Tiebout economies, where the locally provided public
good itself acts as a convener in our terms.9

In addition to separability, we introduce a second property of the hedonic utility func-
tions, superadditivity. The superadditivity property reflects synergies which are assumed to
be attributed to the convener who acts as a coordinator in the value generation process.

Definition 4.4 Let Γ be a permissible activity structure on N. For agent i ∈ N, the hedonic

utility function ui : Ai(∆) → R is superadditive if for any Gi ∈ Ai(∆) and Hi ∈ Ai(∆) with

Gi ∪ Hi ∈ Ai(∆) and Gi ∩ Hi = ∅ it holds that ui(Gi ∪ Hi) > ui(Gi) + ui(Hi).
Furthermore, we say that a utility profile u ∈ U on Γ is superadditive if the hedonic utility

function ui is superadditive for every agent i ∈ N. The collection of all superadditive utility

profiles is denoted byUs ⊂ U.

9In this regard if all cooperatives exhibit such non-externalities towards its members, the activities repre-
sented through these cooperatives are separable and, thus, can in principle be evaluated objectively. This is the
principle of pricing membership of clubs in a club economy (Gilles and Scotchmer, 1997), or the Samuelson
conditions in the efficient provision of a pure public good in the sense of Samuelson (1954).
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Within the context of network economies we address the existence of stable assignments for
arbitrary separable and superadditive hedonic utility profiles. Formally, we introduce:

Definition 4.5 Let Γ be a matching structure and let U? ⊆ U be some given class of per-

missible utility profiles on the matching structure Γ. The matching structure Γ is universally
(strongly) stable on the classU? if for every utility profile u ∈ U? there exists a (strongly)

stable assignment λ? in the network economy E = (N,∆, u).

We denote byU = Us ∩Un the class of all hedonic utility profiles that satisfy the superad-
ditivity as well as the non-externality properties.

Theorem 4.6 The matching structure Γ is universally strongly stable on the class U of

superadditive hedonic utility profiles exhibiting no externalities if and only if Γ satisfies the

property that, if Γ contains a cycle C ⊂ Γ, then `(C) = 6k, where k ∈ N is any integer.

The proof of Theorem 4.6 is given in Appendix B.

The necessary and sufficient conditions for the existence of universal stability are slightly
weaker than those for strong stability as our next result shows.

Theorem 4.7 The matching structure Γ is universally stable on the classU of superadditive

hedonic utility profiles exhibiting no externalities if and only if Γ satisfies the property that,

if Γ contains a cycle C ⊂ Γ, then `(C) = 3k, where k ∈ N is any integer.

The proof of Theorem 4.7 may also be found in Appendix B.

Theorems 4.6 and 4.7 state that under some regularity conditions, a permissible activity
structure is (strongly) stable for hedonic utility profiles without externalities if and only if
the prevailing network structure exhibits certain acyclicity properties. Unfortunately, the
partial acyclicity conditions on the permissible activity structure stated in the assertions are
more difficult to interpret than the condition stated in Theorems 3.5.10

From Theorems 4.6 and 4.7 we may derive some more directly interpretable conclusions.
In particular, if the network structure is acyclic, then the permissible activity structure is
universally strongly stable for utility profiles exhibiting no externalities.

Corollary 4.8 If the matching structure Γ is acyclic, then Γ is universally strongly stable on

the classU of superadditive hedonic utility profiles exhibiting no externalities.

10The condition formulated in Theorem 4.7 can partially be interpreted. We note that if all agents in N
assume one of three socioeconomic roles such that in Γ: (i) agents of two of the three types link with at most
one of any other type; and (ii) agents of one particular type can link with multiple other types. The third type
clearly refers to a class of market makers or middlemen. This illustrated in the example of a network economy
with structure B, introduced in Section 1.1.
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One particular interesting class of acyclic matching structures is that of hierarchical struc-
tures. Within a hierarchical structure, multiple levels can be distinguished in which agents
in a certain level can only communicate with agents in lower and higher levels. It is well-
accepted that hierarchical structures are common institutional features of any contemporary
society. In particular, social roles are usually assigned to correspond to the various levels
within the hierarchical power structure in the economic and political sphere of a society.

The main conclusion from the assertions stated in Theorems 4.6 and 4.7 is that if a
society is hierarchically structured, it is universally strongly stable—and, therefore, univer-
sally stable. In this regard a hierarchical organization structure is a “mode of governance”
and as such the corresponding social role and authority structure steer the society towards a
strongly stable state. As such, a hierarchical organization of a society supports and promotes
economic development and stability.

4.2 Introducing size-based externalities

Next we consider certain conditions under which stable assignments emerge in the presence
of externalities. We investigate a simple size-based formulation of externalities. The more
members a cooperative has, the more it affects the resulting utility values for its members.
Such size-based externalities are very common as every bounded facility is subject to crowd-
ing. In the literature on Tiebout and club economies such crowding externalities have been
investigated extensively. We refer here to the seminal paper by Conley and Wooders (1997)
and the subsequent work by Conley and Konishi (2002). For the case of size-based external-
ities we are able to state a rather general result concerning existence of stable assignments.

For utility profiles with size-based externalities, the number of agents in a cooperative
is determining the size of the externality. The identity of the convener of the cooperative
determines whether the externality is positive or negative, but the identity of the remainder
of the cooperative membership is irrelevant for the amount of externality generated.

Definition 4.9 Let E = (N,∆, u) be a network economy. Then the utility function u exhibits
a (linear) size-based externality if for every cooperative G ∈ Σ(Γ) :

ui(G) =
∑

j∈Ni(G)

ui(i j) + αc · [ #N(G) − 2 ] (14)

for all i ∈ N(G), where c = K(G) is G’s convener and αc ∈ R is a convener-specific synergy

parameter.

If a convener c has an externality parameter αc > 0, she brings about a positive externality in
the cooperative. This refers to “economies to club size” based on the total size of the coop-
erative gathered around this convener. If, on the other hand, this convener has an externality
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parameter αc < 0, she causes a negative externality in the cooperative. This can be referred
to as “crowding” (Conley and Wooders, 1997).

First we report that there exist network economies exhibiting size-based externalities in
which there is no stable assignment. An example is presented below.

Example 4.10 Let N = {1, 2, 3, 4} and Γ = {12, 23, 34}. Let α2 = 200 and α3 = −50. Let
the utility function be such that u1(12) = u2(22) = u3(33) = −100, u1(11) = u2(12) = 0,
u2(23) = u4(34) = 100, u4(44) = 90, u3(23) = 60, and u3(34) = 300. Using the lin-
ear size-based externality function, we can compute the utility levels in the two possible
cooperatives11 213 and 314 in a straightforward manner: u1(213) = 100, u2(213) = 300,
u3(213) = 260, u2(324) = u4(324) = 50, and u3(324) = 310.
We now claim that in this example there is no stable assignment. First, consider the assign-
ment generating (12, 34). It is not stable because [PS*] is not satisfied: 50 = u2(324) >
u2(12) = 0 and 310 = u3(324) > u3(34) = 300. Also, since −100 = u2(22) < u2(324) = 50,
the [PS*] condition is not satisfied and the assignment generating (11, 22, 34) is not stable
either. Next, consider (11, 324), which is not stable since [IR] for agent 4 is not satisfied:
50 = u4(324) < u4(44) = 90. Moving on, assignment (11, 23, 44) is not stable due to a
violation of [PS*]: 0 = u1(11) < u1(213) = 100 and 100 = u2(23) < u2(213) = 300.
Finally, (213, 44) is not stable due to a violation of [PS]: 260 = u3(213) < u3(34) = 300
and 90 = u4(44) < u4(34) = 100. Using the same reasoning, we find that (12, 33, 44) and
(11, 22, 33, 44) are not stable either. �

Second, stable assignments may not exist even when we impose uniform linear size-based
externalities on all conveners. The following two examples illustrate this point. The first
example imposes uniform, but negative, size-based externalities.

Example 4.11 Let N = {1, 2, 3} and let Γ = {12, 23}. Now consider α2 = −2. Let the utility
function be such that ui(ii) = 0 for all i = 1, 2, 3 and u1(12) = u2(12) = 3, u2(23) = 4, and
u3(23) = 1. Using the linear size-based externality function, we can now compute the utility
levels in the cooperative 213 in a straightforward manner: u1(213) = 1, u3(213) = −1, and
u2(213) = 5. We now claim that there is no stable assignment in this economy.
To show this, first, consider (12, 33). This assignment is not stable due to a violation of
[PS]: 3 = u2(12) < u2(23) = 4 and 0 = u3(33) < u3(23) = 1. Similarly (11, 22, 33) is not
stable. Next, (11, 23) is not stable due to a violation of [PS*]: 0 = u1(11) < u1(213) = 1 and
4 = u2(23) < u2(213) = 5. Finally, (213) is not stable due to a violation of [IR] for agent 3:
−1 = u3(213) < u3(33) = 0. �

Finally, we consider a 5-agent circular matching structure. Here, uniformity of the the size-
based externality for conveners is positive. However, the emergence of a Condorcet-like

11Here we introduce the following shorthand notation in the form of triples i jk to denote a permissible
cooperative consisting of the three agents i, j, and k where i acts as a convener. Similarly we use the quadruplet
i jkl to describe a four-agent cooperative with convener i. This notation is adopted in the rest of the paper.
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cycle in the economy prevents the desired stability.

Example 4.12 Let N = {1, 2, 3, 4, 5} and let Γ = {12, 15, 23, 34, 45}. Furthermore, let αc =

α = 2 for all potential conveners c ∈ K (Σ(Γ)) = N. The utility levels for each matching
is given as follows: ui(ii) = 0 for all i ∈ N, u1(12) = u2(23) = u3(34) = u4(45) = 2,
u1(15) = u2(12) = u3(23) = u4(34) = u5(45) = 10 and u5(15) = −1. The utility levels
in all possible cooperatives are computed in a straightforward manner from the linear size-
based externality function: u5(125) = 1, u1(213) = u2(324) = u3(435) = u4(514) = 4,
u5(514) = 11, u1(514) = u2(125) = u3(213) = u4(324) = u5(435) = 12, and u1(125) =

u2(213) = u3(324) = u4(435) = 14. We now claim that also in this example there is no
stable activity structure. �

We conclude from these three examples that size-based externalities prevent the emergence
of a stable assignment if there are non-uniform externalities, there are negative size-based
externalities, or there are cycles in Γ. However, if these three conditions are excluded,
stability can still be established.

Theorem 4.13 Let E = (N,∆, u) be a network economy where u exhibits positive size-based

externalities such that αc = α > 0 for all potential conveners c ∈ K(Γ). If Γ is acyclic, then

E admits a stable assignment.

A proof of this existence result is available upon request from the authors.

This assertion cannot be strengthened to cover strong stability rather than regular stability.
The next example devises a simple case satisfying the conditions of Theorem 4.13 in which
no strongly stable assignment can be constructed.

Example 4.14 Let N = {1, 2, 3}. Consider the matching structure Γ = {12, 23} and the
resulting permissible cooperative structure Σ(Γ) = {213}. We consider the hedonic utility
profile with size-based externalities generated by α = 2 and u1(11) = u3(33) = 0, u2(22) =

−4, u1(12) = −1, u2(23) = −3, and u2(12) = u3(23) = 1. Now we derive that u1(213) =

−1 + 2 = 1, u2(213) = 1 − 3 + 2 = 0, and u3(213) = 1 + 2 = 3.
We now check that in this economy there is no strongly stable assignment: {11, 23} is not
stable since agent 1 wants to join agent 2 in the cooperative 213 and its convener, agent
2, agrees; {12, 33} is not stable since [IR] is not satisfied for agent 1; {213} is not strongly
stable since its convener, agent 2, prefers 12 over 213 and thus severs the participation of
agent 3; and {11, 22, 33} is not stable since agents 2 and 3 prefer the matching 23 over being
autarkic.
Although there is no strongly stable assignment in this network economy, cooperative {213}
forms a stable assignment. �

Example 4.14 confirms that the presence of simple size-based externalities prevents the
emergence of strongly stable assignments. Thus, in the presence of these externalities only
economies with “open” cooperative economic activities can achieve stability.
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5 Some concluding remarks

In this paper we address the question how economic stability is founded on certain identi-
fied properties of the structure of relationships among the constituents of an economy. We
interpret these structural properties of such economic networks as “institutional”, in partic-
ular through the assumption of socioeconomic roles by individuals in these networks. The
adoption of such roles induces acyclicity of these networks, implying economic stability.
The main conclusion from our theory is that institutional frameworks increase the stability
in an economy.

There is a significant link of our theory with the work of Burt (1992) on structural holes
and the developed network framework of economic activities. According to Burt, optimiz-
ing the number of nonredundant contacts is a way to increase the efficiency of a social
network: While the presence of cycles allows for at least two distinct paths between two
distinct individuals, in the absence of cycles, there is at most one path between any two
distinct individuals. Thus, in an acyclic structure one does not support links that provide the
same accessibility. Given that the generation and maintenance of links is costly, a structure
without cycles is more efficient than such in which cycles are present. Last, we should men-
tion some limitations of our general framework. In particular, in our work we focus on very
special class of assignments, which consists of star structures. For complex production pro-
cesses, such as hierarchies of several levels, predominant in today’s economic world, these
tools are inadequate. A clear goal for future work is the development of a framework where
more complex patterns can be analyzed.

Future research may consider extending the proposed theory to include several closely
related concepts. First, the multi-person cooperative economic activities considered in this
paper can easily incorporate the notion of organizational “scope”. The size of a cooperative
can be interpreted as its scope and include the possibility to model market size and even
such ideas as globalization. In the current paper we did not address the effects of changes
in scope of a cooperative; these could form the basis for a more dynamic theory of market
formation and economic globalization.

Second, the model presented here can be extended to include the notion of supply chains.
Our model considers the conveners of cooperatives to be fully independent from each other
in their operations and economic activities. However, one could extend the model by linking
conveners with each other in a reduced network linking only fully developed cooperatives.
Such linked cooperatives could form chains and stand for production processes that include
the use of intermediate products, representing the traditional idea of a supply chain. The
employment of supply chains into the theory would significantly alter the model, in partic-
ular the generation of economic values. These could no longer be abstract, but should be
based explicitly on the trade of commodities, including final and intermediate products.
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Appendices

A Proof of Theorem 3.5
In this section we show the existence of a universally stable matching structure. In Lemma
1, we establish some parallels with existing notions in the one-to-one matching literature.

Lemma 1 Consider a matching economy Em = (N,∆m, um). Let the matching structure Γ be
bipartite in the sense that there exists a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 } .

Then there exists a corresponding marriage problem (cf. Gale and Shapley (1962)) such
that a stable matching in the marriage problem corresponds to a stable assignment in the
matching economy Em.

Proof. A marriage problem as introduced by Gale and Shapley (1962) consists of two
finite and disjoint sets of players M and W. Each agent m ∈ M has complete and transitive
preferences, �M

m , over W∪{m} and each agent w ∈ W has complete and transitive preferences,
�W

w , over M∪{w}. A matching is a function µ : M∪W → M∪W of order two, i.e., µ(µ(i)) = i,
µ(m) ∈ W ∪ {m} and µ(w) ∈ M ∪ {w}. A matching µ is stable if there is no (a) player m ∈ M
or w ∈ W who prefers to be matched to herself than to her partner in µ, or (b) pair of distinct
players (m,w) who are not matched by µ and w �M

m µ(m) and m �W
w µ(w). Notice that

conditions (a) and (b) correspond to conditions [IR] and [PS] of Definition 3.3, respectively.
Consider a matching economy Em = (N,∆m, um) with a bipartite matching structure Γ such
that there exists a partitioning {N1,N2} of N with

Γ ⊆ N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 } .

Let Γ̃ = N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 }. Next consider utility profile ũm : Γ̃ ∪ Ω → R
such that for all agents i ∈ N and all matchings i j that satisfy the bipartite property but are
not feasible, i.e., i j ∈ Γ̃ \ Γ, we set ũi

m(i j) < um
i (ii), and for all matchings i j ∈ ∆m, we set

ũm = um. Clearly, ũm represents complete and transitive preferences on Γ̃ ∪Ω.
Let M = N1, W = N2, and let preference profiles �M and �W be represented by hedonic
utility functions φM

i : W ∪ {m} → R with φM
i (Ni(i j)) = ũi(i j) for all i ∈ M and all i j ∈ Γ̃ ∪Ω

and φW
k (Nk(kl)) = ũk(kl) for all k ∈ W and all kl ∈ Γ̃ ∪ Ω. The tuple (M,W,�M,�W) defines

a marriage problem.
Suppose µ∗ is a stable matching in the marriage problem (M,W,�M,�W). Consider, an as-
signment π∗ in economy E such that Ni(π∗(i)) = µ∗(i) for all i ∈ N. Notice that π∗ ∈ ∆m

follows from the stability of µ∗, which implies that for all i ∈ M ∪W, µ∗(i) ∈ Ni(∆m), other-
wise there is a contradiction to the stability of µ∗ as there are two distinct players k ∈ M and
l ∈ W with µ∗(k) = l and kl < Γ such that k and l each prefer to be matched to themselves
than to each other, i.e. k �M

k l and l �W
l k given by the construction of ũ, φM, and φW .

Lastly, we show that the stability of the matching function µ∗ in the marriage problem im-
plies the stability of the assignment π∗ in the matching economy (N,∆m, um). The proof
follows by contradiction. Suppose the matching µ∗ is stable and the assignment π∗ is not
stable. Therefore either [IR] or [PS] of Definition 3.3 must be violated.
Suppose, first, that [IR] does not hold and that there is an agent i ∈ N such that ui(π∗) < ui(ii).
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By construction, this implies that there is a player i ∈ M12 such that i �M
i µ(i), which estab-

lishes a contradiction to the stability of µ∗.
Next, suppose that [PS] does not hold and that there are two distinct agents i ∈ N1 and
j ∈ N2 with i j ∈ Γ such that ui(i j) > ui(π∗) and u j(i j) > u j(π∗). By construction this implies
that there are two distinct agents i ∈ M and j ∈ W with µ∗(i) , j such that j �M

i µ∗(i) and
i �W

j µ∗( j) which contradicts to the stability of µ∗.

Proof of Theorem 3.5

If: Consider a matching economy Em = (N,∆m, um). Let the matching structure Γ be bipar-
tite in the sense that there exists a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { i j | i ∈ N1 and j ∈ N2 } .

For any preference profile um, we can obtain a corresponding marriage problem as shown in
Lemma 1. The existence of a stable matching in any marriage problem is shown by means
of the constructive proof of Gale and Shapley (1962) and by means of the non-constructive
proof in Sotomayor (1996). By analogy, this proves the existence of a stable assignment in
matching economy Em for any preference profiles um, given matching structure Γ.

Only If: We show that if the matching structure is not bipartite, there exists a preference
profile for which there is no stable assignment in a matching economy.
Consider a matching economy Em = (N,∆m, um) with N = {i, j, k}, and matching structure
Γ = {i j, ik, jk}. Consider the following preference profile: ui(i j) = u j( jk) = uk(ik) = 2,
ui(ik) = u j(i j) = uk( jk) = 1, and ul(ll) = 0 for all l ∈ {i, j, k}. It is easy to see that there
is no stable assignment in this matching economy. For example, consider the assignment
π(i) = π( j) = i j and π(k) = kk. It is not stable because pairwise stability is not satisfied:
uk( jk) > uk(kk) and u j( jk) > u j(i j). Similarly, one can show that no other assignment is
stable.
This completes the proof of Theorem 3.5

B Proof of Theorems 4.6 and 4.7
The following Lemma states an intermediate result that is required for the proof of existence
of a strongly stable assignment in a network economy without any externalities.
Throughout we let E = (N,Γ, u) be some network economy. As before let ∆m = Ω ∪ Γ be
a structure of feasible simple activities on N and let u ∈ U be an arbitrary profile of utility
functions, we denote by

Bi(∆m, u) = { j ∈ N | i j ∈ ∆m and ui(i j) > ui(ik) for all k ∈ N with ik ∈ ∆m } (15)

the set of most preferred partners of agent i for all i ∈ N.13

12Here we assume, without loss of generality, that i ∈ M. If we were to assume, instead, that i ∈ W the
argument follows analogously.

13Here i ∈ Bi(∆m, u) refers to agent i preferring to remain in autarky over being member of any matching
with another agent.
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Lemma 2 Let the matching structure Γ be acyclic. Then there is an agent i ∈ N such that
i ∈ Bi(∆m, u) or there is a pair of agents i, j ∈ N with i , j such that j ∈ Bi(∆m, u) and
i ∈ B j(∆m, u).

Proof. If there is some agent i ∈ N with i ∈ Bi(∆m, u) the assertion is obviously valid. Next
assume that for every agent i ∈ N it holds that i < Bi(∆m, u) and the second part of the
assertion is not true. Then for all agents i, j ∈ N with i , j such that j ∈ Bi(∆m, u) it holds
that i < B j(∆m, u). Consider agent i ∈ N and without loss of generality we may assume that
the set of most preferred agents is a singleton, i.e., Bi(∆m, u) = { j}. So, it must hold that
j , i. Next, consider the set of most preferred partners of agent j. Without loss of generality
we again may assume that B j is a singleton, say B j(∆m, u) = {k}. It must again hold that
k < {i, j}. Subsequently, consider the set of most preferred partners of agent k. Without loss
of generality we again assume uniqueness, say Bk(∆m, u) = {l}. It must be that l < { j, k},
moreover l , i otherwise Γ contains a cycle. Hence, l < {i, j, k}. By continuing this process
in a similar fashion, given that the player set N is finite, we construct a cycle. Therefore, we
have established a contradiction.

Proof of Theorem 4.6

If: Consider a separable network economy E = (N,Γ, u) such that u ∈ U exhibits no
externalities and is superadditive. We consider two separate cases: (I) when Γ does not
contain any cycle; and (II) when Γ contains a cycle with an even number of connected
agents that is a multiple of 3.
Let M ⊆ N be some subset of economic agents. Then we denote by

Γ(M) = ∆m ∩ {i j | i, j ∈ M}

the structure of economic matching activities and autarkic positions restricted to the subset
M. Using this auxiliary notation we proceed with the proof of the two cases.

Case I: Suppose Γ is acyclic.
We now device an algorithm to construct a stable assignment in the economy E introduced
above. This construction consists of several steps and collects agents in various cooperatives
such that the resulting pattern is stable.
We define Γ1 = ∆m, N1 = N, and Λ1 = ∅. We now proceed by constructing the desired
strongly stable assignment in a step-wise fashion:

Let Γk, Nk, and Λk be given for k, emphasizing that Γk ⊆ Γ(Nk) and that Λk ⊆ Γ is some
partial assignment. We now proceed by constructing these elements for step k + 1. With
application of Lemma 2 to Γk, there might be an agent i ∈ Nk such that i ∈ Bi(Γk, u). If that
is the case, we define

Nk+1 = Nk \ {i} ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {ii}.

Subsequently we proceed to step k + 1 in our construction process.

If that is not the case, then for every i ∈ N it holds that i < Bi(Γk, u), but according to Lemma
2 there exist at least two agents i, j ∈ Nk with i , j and i ∈ B j(Γk, u) as well as j ∈ Bi(Γk, u).
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Take two agents i, j ∈ Nk as indicated and define M = ∅ as well as G = {i j} ∈ Γ. We now
check whether the activity G = {i j} can be enhanced into a cooperative. This is done as
follows.
We first introduce some auxiliary notations. Let Γ

−pq
k = Γ(Nk \ {pq}) for any matching

pq ∈ Γk. Let i⊕M define a cooperative where agent i is a convener and all agents j ∈ M are
members for some M ⊆ N \ {i}.
If for every agent h ∈ Nk \ {i, j} it holds that i < Bh(Γ− jh

k , u) or ui(i jh) < ui(i j), and j <
Bh(Γ−ih

k , u) or u j( jh) < u j( jih), then we proceed by defining14

Nk+1 = Nk \ {i, j} ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {i j}.

Subsequently we proceed to step k + 1 in our construction process.

If not, then without loss of generality we may suppose there is some agent h ∈ Nk \ {i, j}
such that i ∈ Bh(Γ− jh

k , u) and ui(ih) ≥ ui(i jh). Then ih is an optimal matching for agent h
in Γk knowing that agent j is engaged with agent i as well. In this case we make agent i a
convener and we add agent h to that cooperative. Thus, we redefine G = {i j, ih} and we let
M = { j, h}.
We now follow the subsequent iterative procedure:

(♣) We first introduce Γ′k = Γ(Nk\M) ⊂ Γk. We proceed as before and check whether there
is some agent h′ ∈ Nk \(M∪{i}) such that i ∈ Bh′(Γ′k, u) and ui(i⊕M∪{h‘}) ≥ ui(i⊕M).
If that is not the case, then we proceed to (�). Otherwise, we proceed to (♠).

(♠) Suppose that an agent h′ can be selected as identified in (♣), then we proceed by
redefining G = G ∪ {ih′} and M = M ∪ {h′}. In this case the identified agent h′ is
added to the cooperative under construction G and removed from consideration. We
then return to (♣) to repeat the process described there for the redefined G and M.

(�) Suppose there is no agent h′ that has an optimal matching with the identified convener
i of cooperative G as described in (♣). Then we proceed to the next step by defining

Nk+1 = Nk \ (M ∪ {i}) ;
Γk+1 = Γ (Nk+1) ;
Λk+1 = Λk ∪ {G}.

Subsequently we proceed to step k + 1 in our construction process.

We proceed through the procedure until for some k = k̄ we arrive at the situation that Nk̄ = ∅.
(Note that such a k̄ 6 n always exists.) Now consider Λ? = Λk̄. First, since the procedure
devised above assigns every agent to either an autarkic activity, a matching activity, or a
cooperative activity, Λ? is an assignment. Furthermore, each constructed activity in Λ? is
based on either the optimality of an autarkic activity, the optimality of a matching activity,
and the optimality of adding a link for a convener. In the latter case, the non-externality
and superadditivity properties of the hedonic utilities imply that the utilities generated in the

14In this case there is no agent who has an optimal matching with agent i or j and whom agent i or j want to
add as a member of a cooperative. In that case the matching i j is assigned to the assignment under construction.
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constructed cooperatives in Λ? are maximal under the imposed restrictions as well. Finally,
this also guarantees that the convener of cooperative G ∈ Σ(Γ) ∩ Λ? does not have any
incentives to break any relationships with members i ∈ N(G). This implies, therefore, that
the constructed assignment Λ? is indeed strongly stable as required.
This concludes the Proof of Case I.

Case II: Suppose Γ contains a cycle C = (i1, . . . , im) of length m = 1 = 6s for some s ∈ N.
Depending on the utility profile, we will distinguish two sub-cases.

Case II.a: First, consider a utility function ui ∈ U which satisfies superadditivity and the
non-externality property, such that either (a) there exists an agent ik with k = 1, . . . ,m − 1
such that ik ∈ Bik(∆

m, u); or (b) there are two consecutive agents along the cycle ik−1, ik ∈ C
for some k = 1, . . . ,m−1 with i0 = im−1 such that ik−1 ∈ Bik(∆

m, u) and ik ∈ Bik−1(∆
m, u); or (c)

there is a pair of agents one of whom is on the cycle and the other not, i.e., ik ∈ C for some
k = 2, . . . ,m − 1 and j < C such that j ∈ Bik(∆

m, u) and ik ∈ B j(∆m, u). Then, we can use
the algorithm described in Case I to construct a strongly stable assignment since this utility
profile ensures that in any subset S ⊆ N there is an agent i ∈ S such that i ∈ Bi(∆m|S , u), or
there is a pair of distinct agents i, j ∈ S such that j ∈ Bi(∆m|S , u) and i ∈ B j(∆m|S , u) where
∆m|S is the restriction of ∆m on the agent set S . Thus, the property of Lemma 2 holds for
such preference profiles.

Case II.b: Lastly, consider a profile of utility functions ui ∈ U such that there is no agent
ik with k = 1, . . . ,m − 1 such that ik ∈ Bik(∆

m, u), or there are no consecutive agents along
the cycle ik−1, ik ∈ C for some k = 1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik(∆

m, u) and
ik ∈ Bik−1(∆

m, u), nor is there a pair of agents one of whom is on the cycle and the other not,
i.e., ik ∈ C for some k = 1, . . . ,m − 1 and j < C such that i j ∈ Bik(∆

m, u) and ik ∈ B j(∆m, u).
Then, without loss of generality, we may assume that uik(ikik) 6 uik(ik−1ik) < uik(ik, ik+1) 6
uik(ikik−1ik+1), uik(ikik) 6 uik(ik−1ik) 6 uik(ikik−1ik+1) < uik(ik, ik+1), or uik(ik−1ik) < uik(ikik) <
uik(ik, ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1.
Suppose, the profile of utility function is uik(ikik) 6 uik(ik−1ik) < uik(ik, ik+1) 6 uik(ikik−1ik+1)
for all k = 1, . . . ,m − 1 with i0 = im−1. Then, a partial assignment Λ? can be introduced that
consists of exactly 2 × s cooperatives of the type

{ {i2i1i3}, {i5i4i6}, . . . , {im−2im−3im−1} } ⊆ Λ?.

Next, all other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) assignment Λ?, which furthermore is strongly stable: all agents
who are not linked to their most preferred partner have their most preferred partner linked to
her own most preferred partner. This implies that they have no incentive to sever their links;
moreover, these agents are not in a matching activity and, therefore, they cannot add a link
without severing an existing link.
Suppose, the profile of utility function is uik(ikik) 6 uik(ik−1ik) 6 uik(ikik−1ik+1) < uik(ik, ik+1)
for all k = 1, . . . ,m − 1 with i0 = im−1. Then, a partial assignment Λ? can be introduced that
consists of exactly 3 × s matchings of the type

{ {i1i2}, {i3i4}, . . . , {im−1im−2} } ⊆ Λ?.

All other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) assignment Λ?, which furthermore is strongly stable: all agents
who are not linked to their most preferred partner have their most preferred partner linked
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to her own most preferred partner. This implies that they have no incentive to sever their
links. Moreover, these agents are better-off in a matching than in a cooperative acting as
conveners. Therefore, they will not add a link.
Last, suppose that the profile of utility function is uik(ik−1ik) < uik(ikik) < uik(ik, ik+1) for all
k = 1, . . . ,m−1 with i0 = im−1. Then, a partial assignment Λ? can be introduced that consists
of exactly m − 1 autarkic agents

{ {i1i1}, {i2i2}, . . . , {im−1im−1} } ⊆ Λ?.

All other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) assignment Λ?, which furthermore is strongly stable: all along
the cycle are autarkic as the only partner whom they prefer to being autarkic prefers to be
autarkic himself than to be matched with them.
This completes the proof of Case II.

Only if: Let Γ = Ω ∪ Γ ∪ Σ(Γ) be a feasible activity structure and letU be the collection of
all superadditive and non-externality hedonic utility profiles. Let there be a strongly stable
assignment in the network economy (N,Γ, u) for all u ∈ U. We show by contradiction the
necessity of the condition that Γ contains no cycles, or that if it contains a cycle, it is a cycle
with an even number of connected agents which is also a multiple of 3. We will discuss two
cases: the first case is when the length of the cycle is even but not a multiple of three, and
the second one is when the length is odd.

Case I: Suppose that the matching structure Γ contains a cycle C = (i1, i2, . . . , im) with
ik, ik+1 ∈ Γ for all k = 1, . . . ,m − 1 and m > 4 and m − 1 is an even number which is not a
multiple of 3.
Now, consider a utility profile u ∈ U such that u j( jik) < u j( j j), uik(ik, j) < uik(ik, ik) <
uik(ik−1, ik) < uik(ik, ik+1) < uik(ikik−1ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1 and all
j ∈ Nik(Γ) \ {ik−1, ik+1}. Let Λ? be a strongly stable assignment in this network economy.
Note that in the strongly stable assignment Λ? the largest number of agents located along
the cycle who can form a cooperative that satisfies the [IR] condition is three and that all of
the agents in such a cooperative are located along the cycle. In addition, since the length of
the cycle is not a multiple of three, it must be that in Λ? at least one agent is autarkic or at
least two agents are in a matching. We consider two sub-cases.

Case I.a: First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m−1. Since Λ? is a strongly stable
assignment, the individual rationality condition is satisfied for all agents in N. Hence, agent
ik−1 is in a state of autarky or connected to agent ik−2 either in the matching g′ = {ik−1ik−2},
or in the cooperative g′′ = {ik−2ik−1ik−3} with i0 = im−1, i−1 = im−2, and i−2 = im−3. In all
three cases the [PS] condition is violated: uik(ik−1ik) > uik(ikik) and uik−1(ik−1ik) > uik−1(g

′′) =

uik−1(g
′) > uik−1(ik−1ik−1). Therefore the strong stability of Λ? implies that {ikik} < Λ? for any

ik ∈ C.

Case I.b: Next, suppose that strongly stable assignment Λ? contains a matching {ik−1, ik}.
Then, agent ik−2 is connected to agent ik−3 either in the matching g′ = {ik−2ik−3}, or in the
cooperative g′′ = {ik−3ik−2ik−4} with i0 = im−1, i−1 = im−2, i−2 = im−3, and i−3 = im−4.15 In
all cases the no blocking condition [PS*] is violated: uik−2(ik−1ik−2ik) > uik−2(g

′) = uik−2(g
′′)

as the the matching ikik−2 < Γ and uik−1({ik−1ik−2ik}) > uik−1(ik−1ik) with k−1 = m − 2 due to
superadditivity.

15Recall that case I.a rules out that {ik−2, ik−2} ∈ Λ?.
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Hence, when Γ contains a cycle with an even number of connected agents which is not a mul-
tiple of three, there are such utility profiles that satisfy superadditivity and non-externality
properties, for which there is no stable assignment in the network economy.

Case II: Now suppose that the matching structure Γ contains a cycle C = (i1, i2, . . . , im) with
ik, ik+1 ∈ Γ for all k = 1, . . . ,m − 1 and m > 4 and m − 1 is an odd integer.
Now, consider a utility profile u ∈ U such that u j( jik) < u j( j j), uik(ik, j) < uik(ik, ik) <
uik(ik−1, ik) < uik(ikik−1ik+1) < uik(ik, ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1 and all
j ∈ Nik(Γ) \ {ik−1, ik+1}. Let Λ? be a strongly stable assignment in this network economy.
Note that in the strongly stable assignment Λ? the largest number of agents located along
the cycle that can form a cooperative and that satisfies the [IR] condition is three and that
all member of this cooperative are located along the cycle. In addition, since the length of
the cycle is odd, in the assignment Λ? there must be at least one agent who is autarkic or at
least three agents who are in a cooperative. We consider two sub-cases.

Case II.a: First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m − 1. Similar to Case I.A, we
can show that the [PS] condition must be violated as uik(ik−1ik) > uik(ikik) and uik−1(ik−1ik) >
uik−1(Λ

?) ≥ uik−1(ik−1ik−1). Since Λ? is strongly stable, then it cannot be that {ikik} ∈ Λ? for
some ik ∈ C.

Case II.b: Lastly, suppose that the cooperative {ikik−1ik+1} ∈ Λ? for some k = 1, . . . ,m − 1
with k0 = im and km+1 = i1. In this case the [RP] condition is violated as uik(ikik−1ik+1) <
uik(ikik+1). Since Λ? is strongly stable, then it cannot be that {ikik−1ik+1} ∈ Λ? for some
ik−1, ik, ik+1 ∈ C.
Hence, when Γ contains a cycle with an odd number of connected agents, there are such
utility profiles that satisfy superadditivity and non-externality properties, for which there is
no stable assignment in the network economy.
This completes the proof of Theorem 4.6.

Proof of Theorem 4.7

If: Consider a separable network economy E = (N,Γ, u) such that u ∈ U exhibits no
externalities and is superadditive. We consider three separate cases: (I) when Γ does not
contain any cycle; (II) when Γ contains a cycle with a number of connected agents that is a
multiple of 3.

Case I: Suppose that Γ is acyclic. Since strong stability implies stability, the proof of Case
I follows the steps in Case I of the proof of Theorem 4.6.

Case II: Suppose that Γ has a cycle C = (i1, . . . , im) with m > 4 and m − 1 = 3s for some
s ∈ N. Depending on the utility profile, we will distinguish two sub-cases analogous to
those discussed in the proof of the Theorem 4.6.

Case II.a: First, consider a utility function ui ∈ U which satisfies superadditivity and the
non-externality properties, such that either (a) there exists an agent ik with k = 1, . . . ,m − 1
such that ik ∈ Bik(∆

m, u); or (b) there are two consecutive agents along the cycle ik−1, ik ∈ C
for some k = 1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik(∆

m, u) and ik ∈ Bik−1(∆
m, u);

or (c) there is a pair of agents one of whom is on the cycle and the other not, i.e., ik ∈ C
for some k = 2, . . . ,m − 1 and j < C such that j ∈ Bik(∆

m, u) and ik ∈ B j(∆m, u). Then, we
can use the algorithm described in Case I to construct a stable assignment since the utility
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profile ensures that in any of the three cases described above, we can identify agents that fit
the requirements stated in Lemma 2.

Case II.b: Next, consider a profile of utility functions ui ∈ U which satisfies superadditivity
and non-externality such that there is no agent ik with k = 1, . . . ,m − 1 such that ik ∈

Bik(∆
m, u), or there are no consecutive agents along the cycle ik−1, ik ∈ C for some k =

1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik(∆
m, u) and ik ∈ Bik−1(∆

m, u), nor is there a pair
of agents one of whom is on the cycle and the other not, i.e., ik ∈ C for some k = 1, . . . ,m−1
and j < C such that i j ∈ Bik(∆

m, u) and ik ∈ B j(∆m, u). Then, without loss of generality, we
may assume that uik(ikik) 6 uik(ik−1ik) < uik(ik, ik+1), or uik(ik−1ik) < uik(ikik) < uik(ik, ik+1) for
all k = 1, . . . ,m − 1 with i0 = im−1.
Suppose, the profile of utility functions is uik(ikik) 6 uik(ik−1ik) < uik(ik, ik+1) for all k =

1, . . . ,m− 1 with i0 = im−1. Then, a partial assignment Λ? can be introduced that consists of
exactly s cooperatives of the type

{ {i2i1i3}, {i5i4i6}, . . . , {im−2im−3im−1} } ⊆ Λ?.

Now, all other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) assignment Λ?, which furthermore is stable: all agents who are
not linked to their most preferred partner have their most preferred partner linked to her
own most preferred partner. This implies that they have no incentive to sever their links;
moreover, these agents are not in a matching activity and, therefore, they cannot add a link
without severing an existing link. In addition, due to the superadditivity of the utility profile,
all conveners prefer to be linked in a cooperative than to be autarkic.
Last, suppose that the profile of utility function is given by uik(ik−1ik) < uik(ikik) < uik(ik, ik+1)
for all k = 1, . . . ,m − 1 with i0 = im−1. Then, a partial assignment Λ? can be introduced that
consists of exactly m − 1 autarkic agents

{ {i1i1}, {i2i2}, . . . , {im−1im−1} } ⊆ Λ?.

All other agents are linked following the algorithm presented in Case I. Thus, we have
constructed a (complete) assignment Λ?, which furthermore is stable: all along the cycle
are autarkic as the only partner whom they prefer to being autarkic prefers to be autarkic
himself than to be matched with them.
This completes the proof of Case II.

Only if: Let Γ = Ω ∪ Γ ∪ Σ(Γ) be a feasible activity structure and letU be the collection of
all superadditive and non-externality hedonic utility profiles. We show by contradiction the
necessity of the condition that Γ contains no cycles or if it contains a cycle it is a cycle with
a number of connected agents equal m > 4 with m − 1 , 3s with s ∈ N.
Let there be a stable assignment in the network economy (N,Γ, u) for all u ∈ U. Let the set
of matchings Γ contain a cycle C = (i1, i2, . . . , im} with ik, ik+1 ∈ Γ for all k = 1, . . . ,m − 1
and m > 4 and m − 1 , 3s with s ∈ N.
Now, consider a utility profile u ∈ U such that u j( jik) < u) j( j j), uik(ik, j) < uik(ik, ik) <
uik(ik−1, ik) < uik(ik, ik+1) < uik(ikik−1ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1 and all
j ∈ Nik(Γ) \ {ik−1, ik+1}. Let Λ? be a stable assignment in this network economy. Note that
in the stable assignment Λ? the largest number of agents along the cycle that can form a
cooperative that satisfies the [IR] condition is three.
Since the length of the cycle is not a multiple of 3, in any assignment along the cycle there
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must be at least one agent who is autarkic, or at least two distinct agents who are in a
matching. We discuss these two sub-cases separately.

Case I: First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m − 1. Since Λ? is a stable
assignment, the individual rationality condition is satisfied for all agents in N. Hence, agent
ik−1 is in a state of autarky or connected to agent ik−2 either in the matching g′ = {ik−1ik−2},
or in the cooperative g′′ = {ik−2ik−1ik−3} with i0 = im−1, i−1 = im−2, and i−2 = im−3. In all
three cases the [PS] condition is violated: uik(ik−1ik) > uik(ikik) and uik−1(ik−1ik) > uik−1(g

′′) =

uik−1(g
′) > uik−1(ik−1ik−1). Since Λ? is stable, then it cannot be that {ikik} ∈ Λ? for some ik ∈ C.

Case II: Next, let the matching {ik−1, ik} ∈ Λ? for some k = 1, . . . ,m − 1 and k0 = m − 1.
Then, agent ik−2 is connected to agent ik−3 either in the matching g′ = {ik−2ik−3}, or in the
cooperative g′′ = {ik−3ik−2ik−4} with i0 = im−1, i−1 = im−2, i−2 = im−3, and i−3 = im−4. In all
cases the no blocking condition [PS*] is violated: uik−2(ik−1ik−2ik) > uik−2(g

′) = uik−2(g
′′) and

uik−1({ik−1ik−2ik}) > uik−1(ik−1ik) with k−1 = m − 2 due to superadditivity.
Hence, when Γ contains a cycle with a number of connected agents not a multiple of three,
there are such utility profiles that satisfy superadditivity and non-externality properties, for
which there is no stable assignment in the network economy.
This completes the proof of Theorem 4.7.
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Not for Publication

C Proof of Theorem 4.13
Before we present the proof we will introduce additional shorthand notation and some aux-
iliary results.

First, we introduce some new terms. Let E = (N,Γ, u) be a network economy. Let Λ be
an assignment. The neighborhood of agent i ∈ N in assignment Λ is denoted by Ni(Λ). The
utility of agent i in assignment Λ is denoted by ui(Λ). Furthermore, we say that agents i ∈ N
and j ∈ N form a blocking pair if one of the conditions in Definition 4.2 is not satisfied with
respect to these agents. Last, we introduce several relationships between assignments. We
will say that a blocking pair in assignment Λ is satisfied in assignment Λ′ if assignment Λ′

is formed by satisfying the condition in Definition 4.2 that is violated in assignment Λ for a
given blocking pair of agents i and j.

Let the assignment Λ′ be formed by severing all links of agent i in assignment Λ and
forming the autarky ii. Then the relationship between assignments Λ and Λ′ will be denoted
as Λ′ = Λ ∪ {ii}.

Let the assignment Λ′ be formed by severing all links of two distinct agents i and j in
assignment Λ with j < Ni(Λ) and forming the matching i j. Then the relationship between
assignments Λ and Λ′ will be denoted as Λ′ = Λ ∪ {i j}. Notice that for all agents k ∈ Ni(Λ)
such that Nk(Λ) = {i}, it will hold that {kk} ⊆ Λ′. Similarly, for all agents l ∈ N j(Λ) such
that Nl(Λ) = { j}, it will hold that {ll} ⊆ Λ′.

Last, let the assignment Λ′ be formed by severing all links of agent i in assignment Λ

and forming the link between agents i and j with j < Ni(Λ) such that agent j keeps all his
links present in assignment Λ. Then the relationship between assignments Λ and Λ′ will be
denoted as Λ′ = Λ⊕ j {i j} where ⊕ j indicates that agent j acts as a convener and keeps all his
links. Notice that for all agents k ∈ Ni(Λ) such that Nk(Λ) = {i}, it will hold that {kk} ⊆ Λ′.

Below we present some preliminary results.

Lemma 3 Let (N,Γ, u) be a network economy such that the utility function u exhibits mul-
tiplicative size-based externalities with αc > 0 for all feasible conveners c ∈ K(Σ(Γ)). Then
for any agent i ∈ N and any two cooperatives G and H ∈ Σ(Γ) with i ∈ N(G) and i ∈ N(H)
and K(G) = K(H) and K(G) , {i}, it holds that

(i) ui(G) = ui(H) if and only if #N(G) = #N(H)

(ii) ui(G) < ui(H) if and only if #N(G) < #N(H).

The proof of Lemma 3 follows directly from the definitions and is therefore omitted.

Lemma 4 Let (N,Γ, u) be a network economy. Let Γ be acyclic. Then there is at most one
path between any two distinct agents in N.

The proof of Lemma 4 follows immediately from the fact that Γ is acyclic. As a corollary
of Lemma 4, we know that for any agent i ∈ N and any two distinct agents j, k ∈ Ni(Γ), it
holds that jk < Γ.

Lemma 5 Let (N,Γ, u) be a network economy and Γ be acyclic. Let Λ and Λ′ be two
assignments in this network economy such that Λ′ is formed by satisfying a blocking pair
between two agents s, t ∈ N. Consider an agent j ∈ N \ {s, t} such that p js = (i1, . . . , im) with
i1 = j and im = s and t < p js who does not form a blocking pair in Λ. Then:
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(i) If j ∈ Ns(Λ) and Λ′ = Λ ⊕s {st}, j cannot form a blocking pair in Λ′;

(ii) If m > 4, then agent j cannot form a blocking pair in Λ′;

(iii) If m > 3 and im−1s < Λ, then agent j cannot form a blocking pair in Λ′;

(iv) If m = 2 and js < Λ, then the only blocking pair agent j may form in Λ′ is with
agent s in which PS* condition of Definition 4.2 is not satisfied and agent s acts as a
convener;

(v) If m = 4, then agent j may only form a blocking pair in Λ′ with agent i2 and only if
Ni2(Λ) = Ns(Λ);

Proof. Consider a network economy (N,Γ, u) with Γ be acyclic. Let Λ and Λ′ be two
assignments such that Λ′ is formed by satisfying a blocking pair between two agents s, t ∈ N.
Consider an agent j ∈ N \ {s, t} such that p js = (i1, . . . , im) with i1 = j and im = s and t < p js

who does not form a blocking pair in Λ.

(i) Let j ∈ Ns(Λ) and Λ′ = Λ ⊕s { js}. By Lemma 3, u j(Λ) < u j(Λ′) and by Lemma 4 for
all h ∈ N j(Γ) with j , s it holds that Nh(Λ) = Nh(Λ′) and uh(Λ) = uh(Λ′). Hence if
agent j could form a blocking pair in Λ′, he could form the same blocking pair in Λ.

(ii) Let m > 4. By Lemma 4, m > 4, and t < p js it follows that N j(Γ) ∩ Ns(Γ) = ∅ and
N j(Γ)∩Nt(Γ) = ∅. Hence, for agent j it holds that N j(Λ) = N j(Λ′) and u j(Λ) = u j(Λ′).
Moreover, since m > 4 for all agents h ∈ N j(Γ) it holds that Nh(Λ) = Nh(Λ′) and
uh(Λ) = uh(Λ′). Since agent j can only form a blocking pair with an agent h ∈ N j(Γ),
it follows that if j does not form a blocking pair in Λ, j cannot form a blocking pair
in Λ′ either.

(iii) If m > 4, the proof follows the proof of case (ii) above. Let m = 3 or m = 4 and
im−1s < Λ. By im−1s < Λ and using Lemma 4, it follows that N j(Λ) = N j(Λ′) and
u j(Λ) = u j(Λ′) and that for all agents h ∈ N j(Γ) it holds that Nh(Λ) = Nh(Λ′) and
uh(Λ) = uh(Λ′). Since agent j can only form a blocking pair with an agent h ∈ N j(Γ),
it follows that if j does not form a blocking pair in Λ, j cannot form a blocking pair
in Λ′ either.

(iv) Let m = 2 and js < Λ. First suppose that agent j can form a blocking pair in Λ′ with
an agent h ∈ N j(Γ) with h , s. This is not possible due to case (iii) above.

Next, suppose that agents j and s form a blocking pair in Λ′ because the PS condition
of Definition 4.2 is not satisfied. Hence, it must be that us(Λ′) < us( js) and u j(Λ′) <
u j( js). Since u j(Λ) = u j(Λ′) and us(Λ) < us(Λ′), agents j and s could form a blocking
pair in Λ, which establishes a contradiction to the fact that agents s and t form the
only blocking pair in Λ.

Last, suppose that agents j and s form a blocking pair in Λ′ becasue the PS* condition
of Definition 4.2 is not satisfied and agent j acts as a convener. Hence it must be that
us(Λ′) < us( js) + α j#Ns(Λ′) and u j( js) > −α j. Since us(Λ′) > us(Λ) it follows that
agents j and s could form a blocking pair in Λ, which establishes a contradiction to
the fact that agents s and t form the only blocking pair in Λ.

Hence the only blocking pair agents j and s can form in Λ′ is if the PS* condition of
Definition 4.2 is not satisfied with agent s acting as a convener.
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(v) Let m = 4. Lemma 4, m = 4, and t < p js imply that N j(Γ) ∩ Ns(Γ) = ∅ and N j(Γ) ∩
Nt(Γ) = ∅. Hence, for agent j it holds that N j(Λ) = N j(Λ′) and u j(Λ) = u j(Λ′).
Moreover, since m = 4 there is only one agent k ∈ N j(Γ) for whom it may hold
that uk(Λ) > uk(Λ′) and it can only hold if Nk(Λ) = Ns(Λ): for all other agents
h ∈ N j(Γ) \ {k} it holds that Nh(Λ) = Nh(Λ′) and uh(Λ) = uh(Λ′). Therefore, if j does
not form a blocking pair in Λ, the only blocking pair he can form in Λ′ is with agent
k.

This completes the proof of Lemma 5.

Proof of Theorem 4.13

Let E = (N,Γ, u) be a network economy such that u exhibits multiplicative size-based exter-
nalities such that αc > 0 for all potential conveners c ∈ N∗(Σ(Γ)). Suppose Γ is acyclic.
Suppose, that E does not admit a stable assignment. Therefore there exists a sequence of
assignments Λ = (Λ1, . . . ,Λr) with Λk+1 constructed by satisfying a blocking pair in Λk for
k = 1, . . . , r − 1 such that Λr = Λ1. If not, due to the finite number of assignments, we can
construct a stable assignment by satisfying blocking pairs sequentially.
Furthermore, all assignments have a blocking pair. Hence, starting from any sequence of
assignments Λ′ = (Λ′1, . . . ,Λ

′
r) with r > 4 such that any assignment Λ′f ⊆ Λ

′ is formed by
satisfying a blocking pair in the preceding assignment Λ′f−1 for f = 1, . . . , r − 1 contains
an assignment Λ′k ⊆ Λ such that Λ′r = Λ′k. Otherwise, due to the finite number of possible
assignments, we can construct stable assignment by satisfying blocking pairs sequentially.
Without loss of generality, suppose that there is exactly one such sequence Λ = (Λ1, . . . ,Λr)
with r > 4 such that any assignment Λk ⊆ Λ is formed by satisfying a blocking pair in the
preceding assignment Λk−1 for k = 1, . . . , r − 1 with Λr = Λ1. Hence starting from any
assignment Λ by satisfying blocking pairs we reach some assignment Λk ⊆ Λ. Moreover,
each assignment Λ1, . . . ,Λr ⊆ Λ has exactly one blocking pair, otherwise, there are other
sequences of assignments (Λ′1, . . . ,Λ

′
r) with Λ′r = Λ′1.

We will discuss all possible types of blocking pairs in Λ1 and show that it cannot be that
Λr = Λ1.

Case I: Consider assignment Λ1 ⊆ Λ with {ii} ⊆ Λ1 and { j j} ⊆ Λ1 such that agents i and j
form a blocking pair. Hence ui(ii) < ui(i j) and u j( j j) < u j(i j). Since Λr = Λ1, there must
be an assignment Λq ⊆ Λ with 1 < q < r such that either agent i or agent j forms a blocking
pair that requires him to delete the link with the other agent.
Without loss of generality, suppose agent i deletes the link with agent j. For agent i to delete
this link there must be an agent t ∈ Ni(Γ) with t , j such that ut(Λ1) , ut(Λq), so that agents
t and i form a blocking pair in Λq but not in Λ1. For ut(Λq) , ut(Λ1) it must be that agent t
forms a blocking pair in some assignment Λk with 1 < k < q. By Lemmas 4 and 5 cases (ii)
and (iii) it follows that no agent h < Ni(Γ) ∪ N j(Γ) may form a blocking pair before forming
a blocking pair with agent i or j. Hence, agent t must form a blocking pair with agent i in
Λk and by Lemma 5 case (iii), it follows that the agents i acts as convener in that blocking
pair. Hence it must be that ui(it) > −αi and ut(Λ1) < ut(it) + αi#Ni(Λk). By Lemmas 4 and 5
cases (i) and (iii), it follows that agent j will thus not form a blocking pair that requires him
to delete the link with agent i in any assignment Λk+1, . . . ,Λq.
Since agents i and t form a blocking pair in Λq, they are not linked in Λq and since agent i
cannot delete a link with agent t without deleting a link with agent j, there must be another
assignment Λm with k < m < q in which agent t forms a blocking pair that requires him to

33



sever his link with agent i.
Because agent t forms a blocking pair in Λm by deleting the link with agent i, by Lemma
5 cases (i) and (iii), it must be that #Ni(Λq) = #Ni(Λk). Since there is only one blocking
pair in Λq and it requires agent i to delete its links, it must be that ut(Λq) > ut(Λm) =

ut(it) +αi#Ni(Λk) > ut(it), otherwise agents i and t could form a blocking pair when i acts as
a convener. Therefore, it cannot be that agents i and t form a blocking pair because the PS
condition of Definition 4.2 is not satisfied. So it must be that agents i and t form a blocking
pair in Λq because the PS* condition of Definition 4.2 is not satisfied and agent t acts as a
convener. Hence ut(it) > −αt. If agents i and t did not form a blocking pair in Λ1 it must be
that either agent t could not act as a convener in Λ1, or #Nt(Λ1) < #Nt(Λq).

First suppose agents i and t cannot form a blocking pair in Λ1 because agent t cannot act as
a convener.

1. Suppose {tt} ∈ Λ1. By Lemmas 4 and 5, we know that Nl(Λ1) = Nl(Λm) or all
h ∈ Nt(Γ) \ {i}, thus, uh(Λ1) = uh(Λm). If agent t forms a blocking pair in Λm, such
that he deletes the link with i, t could have formed a blocking pair in Λ1 because
ut(Λ1) < ut(Λm) by Lemma 3 and the fact that agent i cannot delete a link without
deleting all its links. Thus establishing a contradiction that there is only one blocking
pair in Λ1 and it involves agents i , t and j , t.

2. Suppose st ∈ (Λ1) with s ∈ N∗(Λ1). If agents i and t form a blocking pair in Λk such
that agent i acts as a convener, it must be that ut(Λk) < ut(it) +αi#Ni(Λk). By Lemmas
4 and 5 if agent t forms a blocking pair in Λm that requires him to delete the link with
agent i, it must be to form a blocking pair with agent s as for all h ∈ Nt(Γ) with h , s
and h , i, Nh(Λ1) = Nh(Λk) = Nh(Λm). If agents s and t form a blocking pair in Λm, it
must be that #Ns(Λm) > #Ns(Λ1) and agent s acts as a convener with agent t.
Hence agent t cannot form a blocking pair with agent i as t cannot act as a convener.
Moreover, by Lemmas 4 and 5 and the fact that there is only one blocking pair in each
assignment, then agent t could only form a blocking pair if agent s deletes all the links
agent t will be autarkic and since ut(tt) < ut(it) + αi#Ni(Λk) the only blocking pair he
could form is with agent i acting as a convener.

Second, suppose that agents i and t did not form a blocking pair in Λ1 because #Nt(Λ1) <
#Nt(Λq) and agent t could form a blocking pair when acting as a convener in Λ1. Since there
is no assignment Λ′ ⊆ Λ such that t forms a blocking pair when acting as a convener with
an agent p < Nt(Λ1) unless #Nt(Λ′) > #Nt(Λ1), otherwise agent t could form this blocking
pair in Λk, there is no assignment Λq in which agent i deletes the link with j to join agent t
as a convener.

Thus we have shown that agents i and j will not delete their link, hence Λr , Λ1. Therefore,
a blocking pair when the PS condition of Definition 4.2 is not satisfied for two autarkic
agents cannot be part of the sequence of assignments Λ.

Case II: Consider assignment Λ1 ⊆ Λ such that { j j} ∈ Λ1 and {ih} ∈ Λ1 with i , h such
that agents i and j form a blocking pair because the PS* condition in Definition 4.2 is not
satisfied. Hence u j( j j) < ui(i j) + αi and ui(i j) > −αi. Consider assignment Λ2 = Λ1 ⊕

i {i j}.
Since Λr = Λ1, there must be an assignment Λm ⊆ Λ with 1 < m < r such that either agent i
or agent j forms a blocking pair that requires him to delete the link with the other agent.
Since there is no stable assignment, there must be a blocking pair in assignment Λ2. By
Lemma 5 cases (i), (ii), and (iii) the blocking pair must involve agent i or j.
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Suppose the blocking pair involves agent i. By Lemmas 4 and 5 and the fact that there is only
one blocking pair in Λ1 any assignment formed by satisfying a blocking pair that involves
an agent l with i ∈ p jl agent j or agent h will not form a blocking pair, unless satisfying the
blocking pair does not require for agent i to delete simultaneously his links with agents j
and h. So, for Λ1 = Λr, there must be an assignment in which agent i deletes his links with
agents j and h. To find a contradiction we can follow the reasoning in Case I.
Suppose instead the blocking pair involves agent j. It must be that it requires from agent j
to sever his link with agent i. By Lemma 4 and Lemma 5 there is no such agent with whom
j can form a blocking pair, otherwise j could form an alternative blocking pair in Λ1.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
an autarkic agent and an agent in a matching cannot be part of the sequence of assignments
Λ.

Case III: Consider assignment Λ1 ⊆ Λ such that { j j} ∈ Λ1 and i ∈ K(Λk) such that agents
i and j form a blocking pair because the PS* condition in Definition 4.2 is not satisfied.
Hence u j( j j) < ui(i j) + αi#Ni(Λ1) and ui(i j) > −αi. Consider assignment Λ2 = Λ1 ⊕

i {i j}.
Since Λr = Λ1, there must be an assignment Λm ⊆ Λ with 1 < m < r such that either agent i
or agent j forms a blocking pair that requires him to delete the link with the other agent.
Following the method and reasoning of Cases I and II, we can show a contradiction.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
an autarkic agent and a convener cannot be part of the sequence of assignments Λ.

Case IV: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1. Let agent i form a blocking pair
because the IR condition of Definition 4.2 is not satisfied. Hence ui(ii) > ui(i j).
Consider assignment Λ2 = Λ1 ∪ {ii}. Since there is no stable assignment, there is a blocking
pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j}, Nl(Λ1) =

Nl(Λ2) and ul(Λ1) = ul(Λ2) a blocking pair in Λ2 must involve either agent i or j and an
agent h ∈ Ni(Γ) ∪ N j(Γ). By Lemma 5 case (iv) this is not possible as neither agent i nor j
can act as a convener in a blocking pair.
Therefore, a blocking pair in which the IR condition of Definition 4.2 is not satisfied for an
agent in a matching cannot be part of the sequence of assignments Λ.

Case V: Consider assignment Λ1 ⊆ Λ such that Ni(Λ1) = { j} and j ∈ K(Λ1). Let agent
i form a blocking pair because the IR condition of Definition 4.2 is not satisfied. Hence
ui(ii) > ui(i j) + α j[#N j(Λ1) − 1].
Consider assignment Λ2 = Λk ∪ {ii}. Since there is no stable assignment, there is a blocking
pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j}, Nl(Λ1) =

Nl(Λ2), and for all agents l ∈ N \ {i, j,N j(Λ2)}, ul(Λ1) = ul(Λ2) a blocking pair in Λ2 must
involve either agent i or j or an agent h ∈ N j(Λ2).
Following the analysis in Case IV, we can show that agent i does not form a blocking pair
before he forms a blocking pair with agent j. Moreover, if there is an assignment such that
#N j(Λm) ≥ #N j(Λ1), then it must be that {ii} ∈ Λm and agents i and j form blocking pair
in which agent j acts as a convener and agent i is autarkic. By Case III we know that a
blocking pair between an autarkic agent and an agent who is acting as a convener cannot be
part of a sequence of assignments such that (Λ1, . . . ,Λr) with Λ1 = Λr, and hence it cannot
be that i and j form a blocking pair. Hence Λr , Λ1.
Therefore, a blocking pair in which the IR condition of Definition 4.2 is not satisfied for
an agent in a cooperative who is not the convener of the cooperative cannot be part of the
sequence of assignments Λ.
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Case VI: Consider assignment Λ1 ⊆ Λ such that {ii} ∈ Λ1 and { js} ∈ Λ1 with j , s. Let
agents i and j form a blocking pair because the PS condition of Definition 4.2 is not satisfied.
Hence ui(ii) < ui(i j) and u j(i j) > u j( js). Since this is the only blocking pair and α j > 0, it
must also be that u j(i j) < −α j, otherwise agents i and j could form a blocking pair because
the PS* condition of Definition 4.2 is not satisfied. We will show that there cannot be an
assignment Λq ⊆ Λ with { js} ∈ Λq.
Consider assignment Λ2 = Λ1 ∪ {i j}. Since there is no stable assignment, there is a blocking
pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j, s}, Nl(Λ1) =

Nl(Λ2), and for all agents l ∈ N \ {i, j, s} it must be that ul(Λ1) = ul(Λ2) a blocking pair in
Λ2 must involve either agent i, j or s.
Suppose the blocking pair in Λ2 involves agent i, then using the analysis for agent i in Case
I, it can be shown that agent i will not delete the link with agent j. And by Lemmas 4 and 5,
if agents j and s do not form a blocking pair in Λ2, they will not form a blocking pair.
Next, suppose that the blocking pair in Λ2 involves agent j. Since u j( js) < u j(i j) and
u j(i j) < −α j agent j will not form a blocking pair with agent s when acting as a convener.
Since u j(i j) < −α j agent j will not form a blocking pair with an agent h ∈ N j(Γ) with
h < N j(Λ1) otherwise agent j could form another blocking pair in Λ1.
It must be that agent s forms a blocking pair in Λ2. Hence, by Lemmas 4 and 5 and the fact
that there is only one blocking pair in each assignment in Λ the first blocking pair agent j is
with agent s. Suppose agent j and s form a blocking pair in some assignment Λk ⊆ Λ with
2 < k < q. By the above discussion, it follows that j and s form a blocking pair because the
PS* condition of Definition 4.2 is not satisfied and agent s acts as a convener. Hence agent
i is autarkic in Λk+1 and does not form a blocking pair unless it is with agent j. In addition,
there is at least one agent h ∈ Ns(Γ) with s , j such that h ∈ Ns(Λk). Note that by Lemmas
4 and 5 and the fact that there is only one blocking pair, h does not form a blocking pair
until agent s does not delete the link and agent s cannot delete the link with agent h without
deleting the link with agent j as well. Hence, { js} cannot be an element of an assignment
unless agent s deletes all his links as a convener.
Suppose there is an assignment Λm with k < m < r such that agent s deletes all his links as a
convener and thus agent j is autarkic. Since u j( j j) < u j(i j) (otherwise agent j could form a
different blocking pair in Λ1), it must be that the only blocking pair in Λm must be by agent
j and i because the PS condition of Definition 4.2 is not satisfied. Since the blocking pair
of agents i and j entails two autarkic agents who form a blocking pair and by Case I, we
know that such blocking pair cannot be part of a sequence of assignments (Λ1, . . . ,Λr) with
Λr = Λ1, thus, we have established a contradiction.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for an
autarkic agent and an agent in a matching cannot be part of the sequence of assignments Λ.

Case VII: Consider assignment Λ1 ⊆ Λ such that {ii} ∈ Λ1 and { j} ∈ K(Λ1). Let agents i
and j form a blocking pair because the PS condition of Definition 4.2 is not satisfied. Hence
ui(ii) < ui(i j) and u j(i j) >

∑
h∈N j(Λ1) u j( jh) +α j[#N j(Λ1)− 1]. Since this is the only blocking

pair and α j > 0, it must also be that u j(i j) < −α j, otherwise agents i and j can form a
blocking pair because the PS* condition of Definition 4.2 is not satisfied. We will show that
there cannot be an assignment Λq ⊆ Λ with N j(Λ1) = N j(Λq).
Consider assignment Λ2 = Λ1 ∪ {i j}. Since there is no stable assignment, there is a blocking
pair in Λ2. Since there is no other blocking pair in Λ1, and for all l ∈ N \ {i, j,N j(Λ1)},
Nl(Λ1) = Nl(Λ2), and ul(Λ1) = ul(Λ2) a blocking pair in Λ2 must involve either agent i, j or
an agent s ∈ N j(Λ1).
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Suppose the blocking pair in Λ2 involves agent i, then using the analysis for agent i in Case
I, it can be shown that agent i will not delete the link with agent j. And by Lemmas 4 and 5,
if agents j and any agent s ∈ N j(Λ1) do not form a blocking pair in Λ2, they will not form a
blocking pair unless agent i deletes his link with j.
Next, suppose the blocking pair in Λ2 involves agent j and no agent s ∈ N j(Λ1). Since
u j(i j) < −α j agent j will not form a blocking pair with an agent h ∈ N j(Γ) with h < N j(Λ1)
otherwise agent j could form another blocking pair in Λ1.
Suppose agent j forms a blocking pair in Λ2 with an agent s ∈ N j(Λ1) with {ss} ∈ Λ2. This,
however, contradicts either Case II or Case VI.
Lastly, suppose that an agent s ∈ N j(Λ1) forms a blocking pair in Λ2 with an agent f ∈ Ns(Γ)
with f , j. Hence if there is an assignment Λq with N j(Λq) = N j(Λk) agent j must form
a blocking pair and the first blocking pair j can make by Lemmas 4 and 5 is with agent s.
Let the assignment in which agents j and s form a blocking pair is Λk. It must be that j and
s form a blocking pair because the PS* condition of Definition 4.2 such that agent s acts
as a convener is not satisfied otherwise j and s could form a blocking pair in Λ2. Hence
by Lemmas 4 and 5 and the fact that there is only one blocking pair in each assignment
agent j cannot form a blocking pair with an agent h ∈ N j(Λ1) with h , s, unless agent s
deletes all his links. If agent s deletes all his links, agent j will be autarkic, and hence, must
form a blocking pair with agent i, otherwise agents i and j could not form a blocking pair
in Λ1. Since j is autarkic and i is autarkic when making a blocking pair with i, we know by
Case I that this blocking pair cannot be part of a sequence of assignments (Λ1, . . . ,Λr) with
Λr = Λ1 and thus we have established a contradiction.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for an
autarkic agent and a convener of a cooperative cannot be part of the sequence of assignments
Λ.

Case VIII: Consider assignment Λ1 ⊆ Λ such that {ii} ∈ Λ1 and N j(Λ1) = {s} and s ∈
K(Λk). Let agents i and j form a blocking pair because the PS condition of Definition 4.2 is
not satisfied. Hence ui(ii) < ui(i j) and u j(i j) > u j( js) + αs[#Ns(Λ1) − 1]. We will show that
there cannot be an assignment Λq ⊆ Λ with Ns(Λq) = Ns(Λ1).
For Ns(Λq) = Ns(Λk), agents j and s must form a blocking pair. Agents j and s can form a
blocking pair if and only if one of them acts as a convener.
Suppose agents j and s form a blocking pair in Λk ⊆ Λ and agent j acts as a convener. For
Ns(Λq) = Ns(Λ1) agent s must be able to form blocking pairs as a convener, hence, there
must be an assignment Λm ⊆ Λ with k < m < q such that either { js} ∈ Λm or s severs his
link with j. By Lemma 5 case (i) if agent j acts as a convener, agent i will not sever his link
with him, otherwise there could be another blocking pair in Λ1. Hence, it must be that s
severs his link with j, which implies that j must join agent s as a convener, and the analysis
below will hold.
Suppose agents j and s form a blocking pair in Λk ⊆ Λ and agent s acts as a convener. For
agent j to sever his link with i to join s as a convener, it must be that Ns(Λk) > Ns(Λ1) − 1.
Hence, there is an agent h ∈ Ns(Γ) with h ∈ Ns(Λk) and h < Ns(Λ1). So, Λk+1 = Λk ⊕

s { js}.
Hence by Lemma 5 no agent h ∈ Ns(Λk) will form a blocking pair unless agent s severs all
his links. Suppose there is assignment Λm ⊆ Λwith k+1 < m < q agent s severs all his links,
then agent j will be autarkic and must form a blocking pair with agent i as another autarkic
agent or as i acting as a convener, otherwise agents i and j could not form a blocking pair in
Λ1 and by Cases I, II, and III such blocking pair cannot be part of a sequence of assignments
(Λ1, . . . ,Λr) with Λr = Λ1.
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Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for
an autarkic agent and an agent linked in a cooperative but not acting as the convener of the
cooperative cannot be part of the sequence of assignments Λ.

Case IX: Consider assignment Λ1 ⊆ Λ such that i ∈ K(Λ1). Let agent i form a blocking
pair because the IR condition of Definition 4.2 is not satisfied. Hence Λ2 = Λ1 ∪ {ii}. Hence∑

h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1 − 1)] < ui(ii).
Consider assignment Λ2 = Λ1 ∪ {ii}. For Λr = Λ1 it must be that agents i and all agents
h ∈ Ni(Λ1)) form blocking pairs in some assignments. Note that {ii} ∈ Λ2 and {hh} ∈ Λ2 for
all h ∈ Ni(Λ1) and thus agent i and each agent h ∈ Ni(Λ1) must form a blocking pair as an
autarkic agent. As proven in Cases I, II, III, VI, VII, and VIII assignments in which autarkic
agents form blocking pairs cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr)
such that Λr = Λ1.
Therefore, a blocking pair when the IR condition of Definition 4.2 is not satisfied for a
convener of a cooperative cannot be part of the sequence of assignments Λ.

Case X: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {st} ∈ Λ1 with s ∈ N j(Γ) and
s , i. Let agents j and s form a blocking pair because the PS condition of Definition 4.2 is
not satisfied. Hence u j(i j) < u j( js) and us(st) < us( js).
Consider assignment Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and t form
blocking pairs in some assignments. Note that {ii} ∈ Λ2 and {tt} ∈ Λ2 and thus i and t
form blocking pairs as autarkic agents. As proven in Cases I, II, III, VI, VII, and VIII,
assignments in which autarkic agents form blocking pairs cannot be part of a sequence of
assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for
two agents linked in matchings cannot be part of the sequence of assignments Λ.

Case XI: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {st} ∈ Λ1 with s ∈ N j(Γ) and
s , i. Let agents j and s form a blocking pair because the PS* condition of Definition 4.2 is
not satisfied. Hence u j(i j) < u j( js) + αS and us( js) > −αs.
Consider assignment Λ2 = Λ1⊕

s{ js}. For Λr = Λ1 it must be that agent i and j form blocking
pairs in some assignment. Note that {ii} ∈ Λ2 and thus i must form a blocking pair as an
autarkic agent. As proven in Cases I, II, III, VI, VII, andVIII, assignments in which autarkic
agents form blocking pairs cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr)
such that Λr = Λ1.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
two agents linked in matchings cannot be part of the sequence of assignments Λ.

Case XII: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ K(Λk). Let agents j
and s form a blocking pair because the PS condition of Definition 4.2 is not satisfied. Hence
u j(i j) < u j( js) and

∑
h∈Ns(Λ1) us(hs) + αs[#Ns(Λ1) − 1] < us( js).

Consider assignment Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and h ∈ Ns(Λ1)
form blocking pairs in some assignments. Note that {ii} ∈ Λ2 and {hh} ∈ Λ2 for all h ∈
Ns(Λ1) and thus i and each h ∈ Ns(Λ1) must form at least one blocking pair as an autarkic
agent. As proven in Cases I, II, III, VI, VII, and VIII assignments in which autarkic agents
form blocking pairs cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for an
agent linked in a matchings and a convener cannot be part of the sequence of assignments
Λ.
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Case XIII: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ K(Λ1). Let agents j
and s form a blocking pair because the PS* condition of Definition 4.2 is not satisfied and
agent s acts as a convener. Hence us( js) > −αs and u j(i j) < u j( js) + αs#Ns(Λ1).
Consider assignment Λ2 = Λ1 ⊕

s { js}. For Λr = Λ1 it must be that agents i and j form
blocking pairs in some assignments. Note that {ii} ∈ Λ2 and thus agent i must form at
least one blocking pair as an autarkic agent. As proven in Cases I, II, III, VI, VII, and VIII
assignments in which autarkic agents form blocking pairs cannot be part of a sequence of
assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
an agent linked in a matchings and a convener such that the agent in the matching acts as a
convener cannot be part of the sequence of assignments Λ.

Case XIV: Consider assignment Λ1 ⊆ Λ such that {i j} ∈ Λ1 and {s} ∈ K(Λ1). Let agents
j and s form a blocking pair because the PS* condition of Definition 4.2 is not satisfied
and agent j acts as a convener. Hence

∑
h∈NsΛ1

us(hs) + αs[#Ns(Λ1) − 1] < us( js) + α j and
u j( js) > −α j.
Consider assignment Λ2 = Λ1 ⊕

j { js}. For Λr = Λ1 it must be that agents h ∈ Ns(Λ1) and s
form blocking pairs in some assignments. Note that {hh} ∈ Λ2 for all h ∈ Ns(Λ1) and thus
each h ∈ Ns(Λ1) must form at least one blocking pair as an autarkic agent. As proven in
Cases I, II, III, VI, VII, and VIII, assignments in which autarkic agents form blocking pairs
cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
an agent linked in a matchings and a convener such that the convener of the cooperative
matching acts as a convener cannot be part of the sequence of assignments Λ.

Case XV: Consider assignment Λ1 ⊆ Λ such that i ∈ K(Λ1) and j ∈ K(Λ1). Let agents i
and j form a blocking pair because the PS condition of Definition 4.2 is not satisfied. Hence∑

h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) and
∑

f∈N j(Λ1) u j( j f ) + α j[#N j(Λ1) − 1] < u j(i j).
Consider assignment Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agents h ∈ Ni(Λ1) form
blocking pairs with agent i and agents f ∈ N j(Λ1) form blocking pairs with agent j in some
assignments. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1) and { f f } ∈ Λ2 for all f ∈ N j(Λ1) and
each h ∈ Ni(Λ1) and each f ∈ N j(Λ1) must form at least one blocking pair as an autarkic
agent. As proven in Cases II, III, IV, VII, VIII, and XI, assignments in which autarkic agents
form blocking pairs cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for
two conveners cannot be part of the sequence of assignments Λ.

Case XVI: Consider assignment Λ1 ⊆ Λ such that i ∈ K(Λ1) and j ∈ K(Λ1). Let agents
i and j form a blocking pair because the PS* condition of Definition 4.2 is not satisfied.
Without loss of generality let

∑
h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) + α j#N j(Λ1) and

u j(i j) > −α j.
Consider assignment Λ2 = Λ1 ⊕

j {i j}. For Λr = Λ1 it must be that agents h ∈ Ni(Λ1) form
blocking pairs with agent i in some assignments. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1) and
thus each h ∈ Ni(Λ1) must form at least one blocking pair as an autarkic agent. As proven in
Cases I, II, III, VI, VII, and VIII, assignments in which autarkic agents form blocking pairs
cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
two conveners cannot be part of the sequence of assignments Λ.
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Case XVII: Consider assignment Λ1 ⊆ Λ such that {i j} and Ns(Λ1) = {t} with t ∈ K(Λ1.
Let agents j and s form a blocking pair because the PS condition of Definition 4.2 is not
satisfied. Hence u j(i j) < u j( js) and us(st) + αt[#Nt(Λ1) − 1] < us( js).
Consider assignment Λ2 = Λ1 ∪ { js}. For Λr = Λ1 it must be that agents i and j form
a blocking pair in some assignments. Note that {ii} ∈ Λ2 and thus agent i form at least
one blocking pair as an autarkic agent. As proven in Cases I, II, III, VI, VII, and VIII,
assignments in which autarkic agents form blocking pairs cannot be part of a sequence of
assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for an
agent in a matching and an agent in a cooperative who does not acts as a convener cannot
be part of the sequence of assignments Λ.

Case XVIII: Consider assignment Λ1 ⊆ Λ such that {i j} and Ns(Λ1) = {t} with t ∈ K(Λ1).
Let agents j and s form a blocking pair because the PS* condition of Definition 4.2 is not
satisfied and j acts as a convener. Hence u j( js) > −α j and us(st) + αt[#Nt(Λ1) − 1] <
us( js) + α j. We will show that there is no activity patter Λq ⊆ Λ such that Nt(Λq) = Nt(Λ1).
A contradiction can be established following the same analysis as in Case VIII.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
an agent in a matching and an agent in a cooperative who does not acts as a convener cannot
be part of the sequence of assignments Λ.

Case XIX: Consider assignment Λ1 ⊆ Λ such that i ∈ K(Λ1) and N j(Λ1) = {s} with
s ∈ K(Λ1) and i , s. Let agents i and j form a blocking pair because the PS condition of
Definition 4.2 is not satisfied. Hence

∑
h∈Ni(Λ1) ui(ih) + αi[#Ni(Λ1) − 1] < ui(i j) and u j( js) +

αs[#Ns(Λ1) − 1] < u j(i j).
Consider assignment Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agent i and an agent
h ∈ Ni(Λ1) form a blocking pair in some assignments. Note that {hh} ∈ Λ2 for all h ∈ Ni(Λ1)
and thus agent each agent h ∈ Ni(Λ1) forms at least one blocking pair as an autarkic agent.
As proven in Cases I, II, III, VI, VII, and VIII, assignments in which autarkic agents form
blocking pairs cannot be part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that
Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for a
convener and an agent in a cooperative who does not acts as a convener cannot be part of
the sequence of assignments Λ.

Case XX: Consider assignment Λ1 ⊆ Λ such that i ∈ K(Λ1) and N j(Λ1) = {s} with s ∈
K(Λ1) and i , s. Let agents i and j form a blocking pair because the PS* condition of
Definition 4.2 is not satisfied. Hence ui(i j) > −αi and u j( js) + αs[#Ns(Λ1) − 1] < u j(i j) +

αi#Ni(Λ1). We will shows that there cannot be an assignment Λq ⊆ Λ such that Ns(Λq) =

Ns(Λ1).
A contradiction can be established following the same analysis as in Case VIII.
Therefore, a blocking pair in which the PS* condition of Definition 4.2 is not satisfied for
a convener and an agent in a cooperative who does not acts as a convener cannot be part of
the sequence of assignments Λ.

Case XXI: Consider assignment Λ1 ⊆ Λ such that Ni(Λ1) = s with s ∈ K(Λ1) and N j(Λ1) =

{t} with t ∈ K(Λ1) and i , j. Let agents i and j form a blocking pair because the PS
condition of Definition 4.2 is not satisfied. Hence ui(is) + αs[Ns(Λ1) − 1] < ui(i j) and
u j( jt) + αt[#Nt(Λ1) − 1] < u j(i j).
Consider assignment Λ2 = Λ1 ∪ {i j}. For Λr = Λ1 it must be that agents i and s form
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a blocking pair in some assignments and agents j and t forma a blocking pair in some
assignment. Note that {i j} ∈ Λ2 and thus at least one of agents i and j forms at least one
blocking pair as an agent in a matching. As proven in Cases II, IV, VI, X, XI, XII, XIII, XIV,
XVII, and XVIII assignments in which agents in a matching form blocking pairs cannot be
part of a sequence of assignments Λ = (Λ1, . . . .Λr) such that Λr = Λ1.
Therefore, a blocking pair in which the PS condition of Definition 4.2 is not satisfied for
two agents linked in a cooperatives none of whom acts as a convener cannot be part of the
sequence of assignments Λ.

This completes the proof of Theorem 4.13.
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